化学学报 ›› 2020, Vol. 78 ›› Issue (7): 597-612.DOI: 10.6023/A20050153 上一篇 下一篇
所属专题: 多孔材料:金属有机框架(MOF)
综述
张晋维, 李平, 张馨凝, 马小杰, 王博
投稿日期:
2020-05-09
发布日期:
2020-06-19
通讯作者:
马小杰, 王博
E-mail:xiaojiema@bit.edu.cn;bowang@bit.edu.cn
作者简介:
张晋维,北京理工大学硕士研究生.2017年本科毕业于北京理工大学,现于北京理工大学攻读硕士学位.主要研究领域为MOFs材料的水吸附性质以及湿度调节性能.基金资助:
Zhang Jinwei, Li Ping, Zhang Xinning, Ma Xiaojie, Wang Bo
Received:
2020-05-09
Published:
2020-06-19
Supported by:
文章分享
金属有机框架材料(metal-organic frameworks,MOFs)因具有高比表面积、高孔隙率以及可调的孔结构及孔内环境,在气体吸附、分离以及催化等方面展现出巨大应用潜力.由于水蒸气广泛存在于空气和各类工业气体中,深入理解MOFs与水蒸气之间相互作用机制,并开发具备高水稳定性以及水蒸气吸附与脱附行为可调的MOFs,不仅具有显著的科学意义,而且对推动MOFs的实际应用具有重要的现实意义.本综述将围绕以下内容展开论述:高水稳定性MOFs的设计规律;MOFs对水蒸气的吸附/脱附行为;吸水MOFs在工业气体干燥、沙漠取水、吸附式热泵以及室内湿度调节等领域的应用.
张晋维, 李平, 张馨凝, 马小杰, 王博. 水稳定性金属有机框架材料的水吸附性质与应用[J]. 化学学报, 2020, 78(7): 597-612.
Zhang Jinwei, Li Ping, Zhang Xinning, Ma Xiaojie, Wang Bo. Water Adsorption Properties and Applications of Stable Metal-organic Frameworks[J]. Acta Chimica Sinica, 2020, 78(7): 597-612.
[1] Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444. [2] Honicke, I. M.; Senkovska, I.; Bon, V.; Baburin, I. A.; Bonisch, N.; Raschke, S.; Evans, J. D.; Kaskel, S. Angew. Chem., Int. Ed. 2018, 57, 13780. [3] Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673. [4] Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Mater. Today 2019, 27, 43. [5] Duan, J.; Pan, Y.; Liu, G.; Jin, W. Curr. Opin. Chem. Eng. 2018, 20, 122. [6] Hou, J.; Zhang, H.; Simon, G. P.; Wang, H. Adv. Mater. 2019, e1902009. [7] Li, L. B.; Lin, R. B.; Krishna, R.; Li, H.; Xiang, S. C.; Wu, H.; Li, J. P.; Zhou, W.; Chen, B. L. Science 2018, 362, 443. [8] Lin, R. B.; Li, L.; Zhou, H. L.; Wu, H.; He, C.; Li, S.; Krishna, R.; Li, J.; Zhou, W.; Chen, B. Nat. Mater. 2018, 17, 1128. [9] Silva, P.; Vilela, S. M. F.; Tome, J. P. C.; Paz, F. A. A. Chem. Soc. Rev. 2015, 44, 6774. [10] Wang, X.; Zhang, Y.; Chang, Z.; Huang, H.; Liu, X.-T.; Xu, J.; Bu, X.-H. Chin. J. Chem. 2019, 37, 871. [11] Zhang, X.; Lin, R. B.; Wang, J.; Wang, B.; Liang, B.; Yildirim, T.; Zhang, J.; Zhou, W.; Chen, B. L. Adv. Mater. 2020, 32, 1907995. [12] Xue, D. X.; Wang, Q.; Bai, J. F. Coord. Chem. Rev. 2019, 378, 2. [13] Ding, M.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783. [14] Cadiau, A.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Pillai, R. S.; Shkurenko, A.; Martineau-Corcos, C.; Maurin, G.; Eddaoudi, M. Science 2017, 356, 731. [15] Xiao, J. D.; Jiang, H. L. Acc. Chem. Res. 2019, 52, 356. [16] Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Angew. Chem., Int. Ed. 2016, 55, 5414. [17] Li, R.; Zhang, W.; Zhou, K. Adv. Mater. 2018, 30, e1705512. [18] Li, D.; Kassymova, M.; Cai, X.; Zang, S.-Q.; Jiang, H.-L. Coord. Chem. Rev. 2020, 412, 213262. [19] Guo, X.; Chen, X.; Su, D.; Liang, C. Acta Chim. Sinica 2018, 76, 22(in Chinese). (郭小玲, 陈霄, 苏党生, 梁长海, 化学学报, 2018, 76, 22.) [20] Qiao, W.; Song, T.; Zhao, B. Chin. J. Chem. 2019, 37, 474. [21] Ding, M.; Shi, W. H.; Guo, L.; Leong, Z. Y.; Baji, A.; Yang, H. Y. J. Mater. Chem. A 2017, 5, 6113. [22] Li, X.; Liu, Y. X.; Wang, J.; Gascon, J.; Li, J. S.; Van der Bruggen, B. Chem. Soc. Rev. 2017, 46, 7124. [23] Wang, H.; Rassu, P.; Wang, X.; Li, H.; Wang, X.; Wang, X.; Feng, X.; Yin, A.; Li, P.; Jin, X.; Chen, S. L.; Ma, X.; Wang, B. Angew. Chem., Int. Ed. 2018, 57, 16416. [24] Islamoglu, T.; Chen, Z.; Wasson, M. C.; Buru, C. T.; Kirlikovali, K. O.; Afrin, U.; Mian, M. R.; Farha, O. K. Chem. Rev. 2020. DOI:10.1021/acs.chemrev.9b00828. [25] Kalaj, M.; Denny, M. S., Jr.; Bentz, K. C.; Palomba, J. M.; Cohen, S. M. Angew. Chem., Int. Ed. 2019, 58, 2336. [26] Bian, L.; Li, W.; Wei, Z.; Liu, X.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese). (卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.) [27] Wu, Z.; Shi, Y.; Li, C.; Niu, D.; Chu, Q.; Xiong, W.; Li, X. Acta Chim. Sinica 2019, 77, 758(in Chinese). (武卓敏, 石勇, 李春艳, 牛丹阳, 楚奇, 熊巍, 李新勇, 化学学报, 2019, 77, 758.) [28] Sun, Y.; Qi, Y.; Shen, Y.; Jing, C.; Chen, X.; Wang, X. Acta Chim. Sinica 2020, 78, 147(in Chinese). (孙延慧, 齐有啸, 申优, 井翠洁, 陈笑笑, 王新星, 化学学报, 2020, 78, 147.) [29] Wang, C.; Liu, X.; Keser Demir, N.; Chen, J. P.; Li, K. Chem. Soc. Rev. 2016, 45, 5107. [30] Zhang, S. Y.; Jensen, S.; Tan, K.; Wojtas, L.; Roveto, M.; Cure, J.; Thonhauser, T.; Chabal, Y. J.; Zaworotko, M. J. J. Am. Chem. Soc. 2018, 140, 12545. [31] AbdulHalim, R. G.; Bhatt, P. M.; Belmabkhout, Y.; Shkurenko, A.; Adil, K.; Barbour, L. J.; Eddaoudi, M. J. Am. Chem. Soc. 2017, 139, 10715. [32] Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 4369. [33] Wang, S.; Lee, J. S.; Wahiduzzaman, M.; Park, J.; Muschi, M.; Martineau-Corcos, C.; Tissot, A.; Cho, K. H.; Marrot, J.; Shepard, W.; Maurin, G.; Chang, J. S.; Serre, C. Nat. Energy 2018, 3, 985. [34] Kim, H.; Yang, S.; Rao, S. R.; Narayanan, S.; Kapustin, E. A.; Furukawa, H.; Umans, A. S.; Yaghi, O. M.; Wang, E. N. Science 2017, 356, 430. [35] Fathieh, F.; Kalmutzki, M. J.; Kapustin, E. A.; Waller, P. J.; Yang, J.; Yaghi, O. M. Sci. Adv. 2018, 4, eaat3198. [36] Hanikel, N.; Prevot, M. S.; Fathieh, F.; Kapustin, E. A.; Lyu, H.; Wang, H.; Diercks, N. J.; Glover, T. G.; Yaghi, O. M. ACS Cent Sci. 2019, 5, 1699. [37] Xu, J.; Li, T.; Chao, J.; Wu, S.; Yan, T.; Li, W.; Cao, B.; Wang, R. Angew. Chem., Int. Ed. 2020, 59, 5202. [38] Hanikel, N.; Prevot, M. S.; Yaghi, O. M. Nat. Nanotechnol. 2020, 15, 348. [39] de Lange, M. F.; Verouden, K. J.; Vlugt, T. J.; Gascon, J.; Kapteijn, F. Chem. Rev. 2015, 115, 12205. [40] Lenzen, D.; Bendix, P.; Reinsch, H.; Fröhlich, D.; Kummer, H.; Möllers, M.; Hügenell, P. P. C.; Gläser, R.; Henninger, S.; Stock, N. Adv. Mater. 2018, 30, 1705869. [41] Cao, B. Y.; Tu, Y. D.; Wang, R. Z. iScience 2019, 15, 502. [42] Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Nat. Rev. Mater. 2016, 1, 1. [43] Bai, Y.; Dou, Y.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Chem. Soc. Rev. 2016, 45, 2327. [44] Lin, R.-B.; Xiang, S.; Li, B.; Cui, Y.; Qian, G.; Zhou, W.; Chen, B. Coord. Chem. Rev. 2019, 384, 21. [45] Cao, L.; Wang, T.; Wang, C. Chin. J. Chem. 2018, 36, 754. [46] Zhang, X.; Wang, X.; Fan, W.; Sun, D. Chin. J. Chem. 2020, 38, 509. [47] Yaghi, O. M.; Li, G. M.; Li, H. L. Nature 1995, 378, 703. [48] Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. [49] Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705. [50] Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148. [51] Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 14176. [52] Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Chem. Soc. Rev. 2014, 43, 5594. [53] Wu, Y.; Lv, Z.; Zhou, X.; Peng, J.; Tang, Y.; Li, Z. Chem. Eng. J. 2019, 355, 815. [54] Devic, T.; Serre, C. Chem. Soc. Rev. 2014, 43, 6097. [55] Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H. C. Adv. Mater. 2018, 30, e1704303. [56] Serre, C.; Millange, F.; Thouvenot, C.; Nogues, M.; Marsolier, G.; Louer, D.; Férey, G. J. Am. Chem. Soc. 2002, 124, 13519. [57] Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. Science 2005, 309, 2040. [58] Hong, D.-Y.; Hwang, Y. K.; Serre, C.; Férey, G.; Chang, J.-S. Adv. Funct. Mater. 2009, 19, 1537. [59] Serre, C.; Mellot-Draznieks, C.; Surble, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Science 2007, 315, 1828. [60] Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. Chem. Eur. J. 2004, 10, 1373. [61] Volkringer, C.; Loiseau, T.; Guillou, N.; Férey, G.; Elkaim, E.; Vimont, A. Dalton Trans. 2009, 2241. [62] Bauer, S.; Serre, C.; Devic, T.; Horcajada, P.; Marrot, J.; Férey, G.; Stock, N. Inorg. Chem. 2008, 47, 7568. [63] Vimont, A.; Goupil, J. M.; Lavalley, J. C.; Daturi, M.; Surble, S.; Serre, C.; Millange, F.; Férey, G.; Audebrand, N. J. Am. Chem. Soc. 2006, 128, 3218. [64] Volkringer, C.; Popov, D.; Loiseau, T.; Férey, G. r.; Burghammer, M.; Riekel, C.; Haouas, M.; Taulelle, F. Chem. Mater. 2009, 21, 5695. [65] Reinsch, H.; Stock, N. CrystEngComm 2013, 15, 544. [66] Horcajada, P.; Surble, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Greneche, J. M.; Margiolaki, I.; Férey, G. Chem. Commun. 2007, 2820. [67] Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Chem. Rev. 2012, 112, 1001. [68] Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 10186. [69] Jiang, X.; Li, S. W.; Bai, Y. P.; Shao, L. J. Mater. Chem. A 2019, 7, 10898. [70] Xiong, Y.; Dong, J.; Huang, Z. Q.; Xin, P.; Chen, W.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z.; Ye, J.; Wei, X.; Cao, R.; Gu, L.; Sun, S.; Zhuang, L.; Chen, X.; Yang, H.; Chen, C.; Peng, Q.; Chang, C. R.; Wang, D.; Li, Y. Nat. Nanotechnol. 2020, 15, 390. [71] Huang, X. X.; Shen, T.; Zhang, T.; Qiu, H. L.; Gu, X. X.; Ali, Z.; Hou, Y. L. Adv. Energy Mater. 2020, 10, 21. [72] Li, P.; Li, J.; Feng, X.; Li, J.; Hao, Y.; Zhang, J.; Wang, H.; Yin, A.; Zhou, J.; Ma, X.; Wang, B. Nat. Commun. 2019, 10, 2177. [73] Gao, B.; Zhou, J.; Wang, H.; Zhang, G.; He, J.; Xu, Q.; Li, N.; Chen, D.; Li, H.; Lu, J. Chin. J. Chem. 2019, 37, 148. [74] Kalmutzki, M. J.; Diercks, C. S.; Yaghi, O. M. Adv. Mater. 2018, 30, e1704304. [75] Burtch, N. C.; Jasuja, H.; Walton, K. S. Chem. Rev. 2014, 114, 10575. [76] Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533. [77] Ding, M.; Cai, X.; Jiang, H.-L. Chem. Sci. 2019, 10, 10209. [78] Colombo, V.; Galli, S.; Choi, H. J.; Han, G. D.; Maspero, A.; Palmisano, G.; Masciocchi, N.; Long, J. R. Chem. Sci. 2011, 2, 1311. [79] Luo, Y. R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, U.S., 2007. [80] Yu, X. J.; Xian, Y. M.; Wang, C.; Mao, H. L.; Kind, M.; Abu-Husein, T.; Chen, Z.; Zhu, S. B.; Ren, B.; Terfort, A.; Zhuang, J. L. J. Am. Chem. Soc. 2019, 141, 18984. [81] Lu, P.; Wu, Y.; Kang, H.; Wei, H.; Liu, H.; Fang, M. J. Mater. Chem. A 2014, 2, 16250. [82] Khutia, A.; Rammelberg, H. U.; Schmidt, T.; Henninger, S.; Janiak, C. Chem. Mater. 2013, 25, 790. [83] Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Férey, G. J. Am. Chem. Soc. 2009, 131, 10857. [84] Yuan, S.; Liu, T. F.; Feng, D.; Tian, J.; Wang, K.; Qin, J.; Zhang, Q.; Chen, Y. P.; Bosch, M.; Zou, L.; Teat, S. J.; Dalgarno, S. J.; Zhou, H. C. Chem. Sci. 2015, 6, 3926. [85] Bueken, B.; Vermoortele, F.; Vanpoucke, D. E. P.; Reinsch, H.; Tsou, C.-C.; Valvekens, P.; De Baerdemaeker, T.; Ameloot, R.; Kirschhock, C. E. A.; Van Speybroeck, V.; Mayer, J. M.; De Vos, D. Angew. Chem., Int. Ed. 2015, 54, 13912. [86] Nguyen, H. L.; Gandara, F.; Furukawa, H.; Doan, T. L. H.; Cordova, K. E.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 4330. [87] Nguyen, H. L.; Vu, T. T.; Le, D.; Doan, T. L. H.; Nguyen, V. Q.; Phan, N. T. S. ACS Catal. 2017, 7, 338. [88] Gao, J.; Miao, J.; Li, P. Z.; Teng, W. Y.; Yang, L.; Zhao, Y.; Liu, B.; Zhang, Q. Chem. Commun. 2014, 50, 3786. [89] Keum, Y.; Park, S.; Chen, Y. P.; Park, J. Angew. Chem., Int. Ed. 2018, 57, 14852. [90] Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130, 13850. [91] Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Chem. Eur. J. 2011, 17, 6643. [92] Cao, J.; Yang, Z.-h.; Xiong, W.-p.; Zhou, Y.-y.; Peng, Y.-r.; Li, X.; Zhou, C.-y.; Xu, R.; Zhang, Y.-r. Chem. Eng. J. 2018, 353, 126. [93] Du, X.-D.; Yi, X.-H.; Wang, P.; Zheng, W.; Deng, J.; Wang, C.-C. Chem. Eng. J. 2019, 356, 393. [94] Liu, Y.; Howarth, A. J.; Vermeulen, N. A.; Moon, S.-Y.; Hupp, J. T.; Farha, O. K. Coord. Chem. Rev. 2017, 346, 101. [95] Tanabe, K. K.; Cohen, S. M. Chem. Soc. Rev. 2011, 40, 498. [96] Jasuja, H.; Burtch, N. C.; Huang, Y. G.; Cai, Y.; Walton, K. S. Langmuir 2013, 29, 633. [97] Lv, X. L.; Yuan, S.; Xie, L. H.; Darke, H. F.; Chen, Y.; He, T.; Dong, C.; Wang, B.; Zhang, Y. Z.; Li, J. R.; Zhou, H. C. J. Am. Chem. Soc. 2019, 141, 10283. [98] Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M. J. Am. Chem. Soc. 2012, 134, 18082. [99] Lian, X.; Feng, D.; Chen, Y. P.; Liu, T. F.; Wang, X.; Zhou, H. C. Chem. Sci. 2015, 6, 7044. [100] Towsif Abtab, S. M.; Alezi, D.; Bhatt, P. M.; Shkurenko, A.; Belmabkhout, Y.; Aggarwal, H.; Weseliński, Ł. J.; Alsadun, N.; Samin, U.; Hedhili, M. N.; Eddaoudi, M. Chem 2018, 4, 94. [101] Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Pure Appl. Chem. 2015, 87, 1051. [102] Ng, E.-P.; Mintova, S. Microporous Mesoporous Mater. 2008, 114, 1. [103] Canivet, J.; Bonnefoy, J.; Daniel, C.; Legrand, A.; Coasne, B.; Farrusseng, D. New J. Chem. 2014, 38, 3102. [104] Hatch, C. D.; Wiese, J. S.; Crane, C. C.; Harris, K. J.; Kloss, H. G.; Baltrusaitis, J. Langmuir 2012, 28, 1790. [105] Cadiau, A.; Lee, J. S.; Damasceno Borges, D.; Fabry, P.; Devic, T.; Wharmby, M. T.; Martineau, C.; Foucher, D.; Taulelle, F.; Jun, C. H.; Hwang, Y. K.; Stock, N.; De Lange, M. F.; Kapteijn, F.; Gascon, J.; Maurin, G.; Chang, J. S.; Serre, C. Adv. Mater. 2015, 27, 4775. [106] Kummer, H.; Jeremias, F.; Warlo, A.; Füldner, G.; Fröhlich, D.; Janiak, C.; Gläser, R.; Henninger, S. K. Ind. Eng. Chem. Res. 2017, 56, 8393. [107] Lenzen, D.; Zhao, J.; Ernst, S. J.; Wahiduzzaman, M.; Ken Inge, A.; Frohlich, D.; Xu, H.; Bart, H. J.; Janiak, C.; Henninger, S.; Maurin, G.; Zou, X.; Stock, N. Nat. Commun. 2019, 10, 3025. [108] Li, H.; Feng, X.; Ma, D.; Zhang, M.; Zhang, Y.; Liu, Y.; Zhang, J.; Wang, B. ACS Appl. Mater. Interfaces 2018, 10, 3160. [109] Rieth, A. J.; Yang, S.; Wang, E. N.; Dincă, M. ACS Cent. Sci. 2017, 3, 668. [110] Chen, Z.; Li, P.; Zhang, X.; Li, P.; Wasson, M. C.; Islamoglu, T.; Stoddart, J. F.; Farha, O. K. J. Am. Chem. Soc. 2019, 141, 2900. [111] Leubner, S.; Zhao, H.; Van Velthoven, N.; Henrion, M.; Reinsch, H.; De Vos, D. E.; Kolb, U.; Stock, N. Angew. Chem., Int. Ed. 2019, 58, 10995. [112] Zhang, J. P.; Zhu, A. X.; Lin, R. B.; Qi, X. L.; Chen, X. M. Adv. Mater. 2011, 23, 1268. [113] Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Microporous Mesoporous Mater. 2009, 120, 325. [114] Reinsch, H.; Pillai, R. S.; Siegel, R.; Senker, J.; Lieb, A.; Maurin, G.; Stock, N. Dalton Trans. 2016, 45, 4179. [115] Ma, D.; Li, P.; Duan, X.; Li, J.; Shao, P.; Lang, Z.; Bao, L.; Zhang, Y.; Lin, Z.; Wang, B. Angew. Chem., Int. Ed. 2019, 59, 1. [116] Padial, N. M.; Quartapelle Procopio, E.; Montoro, C.; Lopez, E.; Enrique Oltra, J.; Colombo, V.; Maspero, A.; Masciocchi, N.; Galli, S.; Senkovska, I.; Kaskel, S.; Barea, E.; Navarro, J. A. R. Angew. Chem., Int. Ed. 2013, 52, 8290. [117] Karimi, A.; Abdi, M. A. Chem. Eng. Process.-Process Intensification 2009, 48, 560. [118] Elimelech, M.; Phillip, W. A. Science 2011, 333, 712. [119] Kim, H.; Yang, S.; Rao, S. R.; Narayanan, S.; Kapustin, E. A.; Furukawa, H.; Umans, A. S.; Yaghi, O. M.; Wang, E. N. Science 2017, 356, 430. [120] Sha, H.; Xu, P.; Yang, Z.; Chen, Y.; Tang, J. Renew. Sustain. Energy Rev. 2019, 108, 76. [121] Wade, C. R.; Corrales-Sanchez, T.; Narayan, T. C.; Dincă, M. Energy Environ. Sci. 2013, 6, 2172. [122] Shi, C.; Zhang, H.; Xuan, Y. Build. Environ. 2019, 160, 106175. [123] De Rossi, A.; Carvalheiras, J.; Novais, R. M.; Ribeiro, M. J.; Labrincha, J. A.; Hotza, D.; Moreira, R. F. P. M. Constr. Build. Mater. 2018, 191, 39. [124] Hall, M. R.; Tsang, S. C. E.; Casey, S. P.; Khan, M. A.; Yang, H. Acta Mater. 2012, 60, 89. [125] Watson, T. Nature 2014, 513, S14. [126] Hoek, G.; Krishnan, R. M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J. D. Environ. Health 2013, 12. [127] Buonocore, C.; De Vecchi, R.; Scalco, V.; Lamberts, R. Build. Environ. 2018, 146, 98. [128] Arundel, A. V.; Sterling, E. M.; Biggin, J. H.; Sterling, T. D. Environ. Health Perspect. 1986, 65, 351. [129] Shehadi, M. J. Build. Eng. 2018, 19, 539. [130] Wright, A. M.; Rieth, A. J.; Yang, S.; Wang, E. N.; Dincă, M. Chem. Sci. 2018, 9, 3856. [131] Zheng, J.; Vemuri, R. S.; Estevez, L.; Koech, P. K.; Varga, T.; Camaioni, D. M.; Blake, T. A.; McGrail, B. P.; Motkuri, R. K. J. Am. Chem. Soc. 2017, 139, 10601. [132] Tan, K.; Nijem, N.; Canepa, P.; Gong, Q.; Li, J.; Thonhauser, T.; Chabal, Y. J. Chem. Mater. 2012, 24, 3153. [133] Liu, Z.; Li, W.; Liu, H.; Zhuang, X.; Li, S. Acta Chim. Sinica 2019, 77, 323(in Chinese). (刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.) |
[1] | 孙博, 琚雯雯, 王涛, 孙晓军, 赵婷, 卢晓梅, 陆峰, 范曲立. 高分散共轭聚合物-金属有机框架纳米立方体的制备及抗肿瘤应用[J]. 化学学报, 2023, 81(7): 757-762. |
[2] | 陈俊畅, 张明星, 王殳凹. 晶态多孔材料合成方法的研究进展[J]. 化学学报, 2023, 81(2): 146-157. |
[3] | 闫绍兵, 焦龙, 何传新, 江海龙. ZIF-67/石墨烯复合物衍生的氮掺杂碳限域Co纳米颗粒用于高效电催化氧还原[J]. 化学学报, 2022, 80(8): 1084-1090. |
[4] | 朱鹏飞, 娄晨思, 史雨翰, 王传义. Ag/AgCl/ZIF-8复合材料的制备及其对NO光催化氧化性能的研究[J]. 化学学报, 2022, 80(10): 1385-1393. |
[5] | 赵添堃, 王鹏, 姬明宇, 李善家, 杨明俊, 蒲秀瑛. Salan钛双齿配合物的Sonogashira合成后修饰反应研究[J]. 化学学报, 2021, 79(11): 1385-1393. |
[6] | 刘欢, 李京哲, 李平, 张广智, 张广智, 张豪, 邱灵芳, 齐晖, 多树旺. 2D/3D ZnIn2S4/TiO2复合物的原位构筑及其提高的光催化性能[J]. 化学学报, 2021, 79(10): 1293-1301. |
[7] | 郭振彬, 张媛媛, 冯霄. 金属有机框架分离纯化C4~C6碳氢化合物的研究[J]. 化学学报, 2020, 78(5): 397-406. |
[8] | 于越, 张新波. 多孔金属有机框架材料作为锂金属负极保护层助力长寿命锂氧气电池[J]. 化学学报, 2020, 78(12): 1434-1440. |
[9] | 李阳雪, 张巍, 刘智, 谢志刚. 用环糊精的金属有机框架材料作为模板制备多孔有机笼[J]. 化学学报, 2015, 73(6): 641-645. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||