化学学报 ›› 2021, Vol. 79 ›› Issue (8): 1058-1064.DOI: 10.6023/A21050213 上一篇 下一篇
研究论文
投稿日期:
2021-05-14
发布日期:
2021-06-02
通讯作者:
王继芬
基金资助:
Yuan Lu1,2, Jifen Wang1,2(), Huaqing Xie1,2
Received:
2021-05-14
Published:
2021-06-02
Contact:
Jifen Wang
Supported by:
文章分享
采用第一性原理密度泛函方法优化了LiMn2O4尖晶石结构, 构建并计算了其低指数表面性质. 结果表明, 广义梯度近似(GGA)和自旋极化广义梯度近似(GGA+U)计算的LiMn2O4晶体体相结构中, Mn的d轨道选取有效U值时晶格参数会变大. 但两种计算结果都没有显示出电荷有序和Jahn-Teller畸变的情况. LiMn2O4尖晶石结构缺Li条件下, (001)、(010)和(100)表面Li终端与其他终端相比表面能更低; (110)表面Mn/O终端表面能较Li/Mn/O终端更低. 在所涉及的低指数表面中(111)表面能最低, 表面重构后(111)表面能低至0.270 J/m2, 是尖晶石结构中最稳定的切面. 关于反铁磁研究, (110)表面Mn/O终端表面能较Li/Mn/O终端更低. [↑↑↓↓]自旋排列下Mn/O终端表面能为1.050 J/m2, [↑↓↑↓]自旋排列下Mn/O终端表面能为1.061 J/m2, 即(110)-反铁磁型表面在[↑↑↓↓]自旋组态比[↑↓↑↓]的磁性顺序下更加稳定. 通过对(111)表面重构的研究, 发现该表面欠配位的锰离子会与完全配位的锂离子通过位置交换, 从而更加稳定. 重构表面的平均锰氧化态降低, 会减少Jahn-Teller效应的产生. 除(111)表面外, 其它低指数表面在铁磁和反铁磁下的表面能相似. 其中, (001)T3, (100)T1, (110)T1和(111)T2的表面结构在各自不同表面终端中具有最小的表面能. 本研究为理解LiMn2O4材料容量衰减问题和实验提供理论计算参考, 有助于推动高性能锂电池材料的研究.
陆远, 王继芬, 谢华清. LiMn2O4尖晶石氧化物的低指数表面结构优化及表面能的第一性原理研究[J]. 化学学报, 2021, 79(8): 1058-1064.
Yuan Lu, Jifen Wang, Huaqing Xie. First-principles Study on Low Index Surface Structure Optimization and Surface Energy of LiMn2O4 Spinel Oxides[J]. Acta Chimica Sinica, 2021, 79(8): 1058-1064.
化学式 | 平板混合物组分 | 锂锰氧化物 基态能量∆Gf |
---|---|---|
Slab: Li1+xMn2O4 | ||
Li10Mn16O32 | 4.67LiMn2O4+2.67Li2MnO3+1.33Mn3O4 | ELiMn2O4= –47.17 eV |
Li18Mn32O64 | 12.67LiMn2O4+2.67Li2MnO3+1.33Mn3O4 | ELi2MnO3= –36.65 eV |
Li26Mn48O96 | 20.67LiMn2O4+2.67Li2MnO3+1.33Mn3O4 | EMn3O4=–52.30 eV |
Slab: LiMn2+xO4 | ||
Li8Mn20O32 | 8LiMnO2+4Mn3O4 | ELi10Mn16O32= –387.71 eV |
Li16Mn36O64 | 5.33LiMn2O4+5.33Li2MnO3+6.67Mn3O4 | ELi16Mn36O64= –795.80 eV |
Li24Mn52O96 | 13.33LiMn2O4+5.33Li2MnO3+6.67Mn3O4 | ELi24Mn52O96= –1172.98 eV |
化学式 | 平板混合物组分 | 锂锰氧化物 基态能量∆Gf |
---|---|---|
Slab: Li1+xMn2O4 | ||
Li10Mn16O32 | 4.67LiMn2O4+2.67Li2MnO3+1.33Mn3O4 | ELiMn2O4= –47.17 eV |
Li18Mn32O64 | 12.67LiMn2O4+2.67Li2MnO3+1.33Mn3O4 | ELi2MnO3= –36.65 eV |
Li26Mn48O96 | 20.67LiMn2O4+2.67Li2MnO3+1.33Mn3O4 | EMn3O4=–52.30 eV |
Slab: LiMn2+xO4 | ||
Li8Mn20O32 | 8LiMnO2+4Mn3O4 | ELi10Mn16O32= –387.71 eV |
Li16Mn36O64 | 5.33LiMn2O4+5.33Li2MnO3+6.67Mn3O4 | ELi16Mn36O64= –795.80 eV |
Li24Mn52O96 | 13.33LiMn2O4+5.33Li2MnO3+6.67Mn3O4 | ELi24Mn52O96= –1172.98 eV |
LiMn2O4 | 实验值(nm) | GGA (nm) | GGA+U (nm) | GGA (nm) | GGA+U (nm) |
---|---|---|---|---|---|
a | 0.8238[ | 0.8146 | 0.8419 | 0.809[ | 0.843[ |
b | 0.8238[ | 0.8146 | 0.8419 | 0.809[ | 0.843[ |
c | 0.8238[ | 0.8146 | 0.8419 | 0.809[ | 0.843[ |
LiMn2O4 | 实验值(nm) | GGA (nm) | GGA+U (nm) | GGA (nm) | GGA+U (nm) |
---|---|---|---|---|---|
a | 0.8238[ | 0.8146 | 0.8419 | 0.809[ | 0.843[ |
b | 0.8238[ | 0.8146 | 0.8419 | 0.809[ | 0.843[ |
c | 0.8238[ | 0.8146 | 0.8419 | 0.809[ | 0.843[ |
Surface structure | Surface energy (FM) | Surface energy (AFM) | Literature reference | |
---|---|---|---|---|
(001) | T1 | 0.598 | 0.628 | 0.860[ |
T2 | 0.600 | 0.626 | 0.840[ | |
T3 | 0.597 | 0.615 | 0.720[ | |
(100) | T1 | 0.606 | 0.654 | 0.870[ |
T2 | 1.127 | 1.195 | 1.280[ | |
(110) | T1 | 1.026 | 1.050 | 1.410[ |
T2 | 1.971 | 1.969 | 1.760[ | |
(010) | T1 | 0.599 | 0.668 | 1.300[ |
T2 | 0.603 | 0.667 | 0.960[ | |
T3 | 0.651 | 0.644 | N/A | |
(111) | T1 | 1.005 | 1.299 | 1.290[ |
T2 | 0.812 | 0.896 | 0.850[ | |
T3 | 1.458 | 1.588 | N/A |
Surface structure | Surface energy (FM) | Surface energy (AFM) | Literature reference | |
---|---|---|---|---|
(001) | T1 | 0.598 | 0.628 | 0.860[ |
T2 | 0.600 | 0.626 | 0.840[ | |
T3 | 0.597 | 0.615 | 0.720[ | |
(100) | T1 | 0.606 | 0.654 | 0.870[ |
T2 | 1.127 | 1.195 | 1.280[ | |
(110) | T1 | 1.026 | 1.050 | 1.410[ |
T2 | 1.971 | 1.969 | 1.760[ | |
(010) | T1 | 0.599 | 0.668 | 1.300[ |
T2 | 0.603 | 0.667 | 0.960[ | |
T3 | 0.651 | 0.644 | N/A | |
(111) | T1 | 1.005 | 1.299 | 1.290[ |
T2 | 0.812 | 0.896 | 0.850[ | |
T3 | 1.458 | 1.588 | N/A |
Terminated | Total energy | Surface energy [↑↑↓↓] | Surface energy [↑↓↑↓] |
---|---|---|---|
Mn/O terminated | –364.243 eV | 1.050 | 1.061 |
Li/Mn/O terminated | –352.375 eV | 1.969 | 1.998 |
Terminated | Total energy | Surface energy [↑↑↓↓] | Surface energy [↑↓↑↓] |
---|---|---|---|
Mn/O terminated | –364.243 eV | 1.050 | 1.061 |
Li/Mn/O terminated | –352.375 eV | 1.969 | 1.998 |
[1] |
Cai, Z. F.; Ma, Y. Z.; Huang, X. N.; Yan, X. H.; Yu, Z. X.; Zhang, S. H.; Song, G. S.; Xu, Y. L.; Wen, C. E.; Yang, W. D. J. Energy Storage. 2020, 27, 101036.
doi: 10.1016/j.est.2019.101036 |
[2] |
Lee, A.; Vrs, M.; Dose, W. M.; Niklas, J.; Johnson, C. S. Nat. Commun. 2019, 10, 977.
doi: 10.1038/s41467-019-08941-4 |
[3] |
Xu, G. J.; Liu, Z. H.; Zhang, C. J.; Cui, G. L.; Chen, L. Q. J. Mater. Chem. A 2015, 3, 4092.
doi: 10.1039/C4TA06264G |
[4] |
Liu, J. -D.; Zhang, Y. -D.; Liu, J. -X.; Li, J. -H.; Qiu, X. -G.; Cheng, F. -Y. Acta Chim. Sinica 2020, 78, 1426 (in Chinese.)
doi: 10.6023/A20070330 |
( 刘九鼎, 张宇栋, 刘俊祥, 李金翰, 邱晓光, 程方益, 化学学报, 2020, 78, 1426.)
doi: 10.6023/A20070330 |
|
[5] |
Kozawa, T.; Harata, T.; Naito, M. J. Asian Ceram. Soc. 2020, 8, 309.
doi: 10.1080/21870764.2020.1743413 |
[6] |
Yu, Y.; Guo, J.; Xiang, M.; Su, C.; Duan, K. Sci. Rep. 2019, 1, 16864.
|
[7] |
Wei, T.; Zhuang, Q. -C.; Wu, C.; Cui, Y. -L.; Fang, L.; Sun, S. -G. Acta Chim. Sinica 2010, 68, 1481(in Chinese.)
|
( 魏涛, 庄全超, 吴超, 崔永丽, 方亮, 孙世刚, 化学学报, 2010, 68, 1481.)
|
|
[8] |
Yu, F.; Zhang, J. -J.; Wang, C. -Y.; Yuan, J.; Yang, Y. -F.; Song, G. -Z. Prog. Chem. 2010, 22, 9 (in Chinese.)
|
( 于锋, 张敬杰, 王昌胤, 袁静, 杨岩峰, 宋广智, 化学进展, 2010, 22, 9.)
|
|
[9] |
Liu, Y. J.; Li, X. H.; Guo, H. J.; Wang, Z. X.; Hu, Q. Y.; Peng, W. J.; Yang, Y. Rare Metals 2009, 4, 322.
|
[10] |
Lin, C.; Robert, E. W.; Kan, S. C.; Joseph, A. L.; Christopher, J.; Zhen, Z. Y.; Mark, C.; Hersam,
doi: 10.1016/j.chempr.2018.08.006 |
[11] |
Benedek, R.; Thackeray, M. M. Phys. Rev. B 2011, 83, 173.
doi: 10.1103/PhysRev.83.173 |
[12] |
Karim, A.; Fosse, S.; Persson, K. A. Phys. Rev. B 2013, 87, 178.
|
[13] |
Ouyang, C. Y.; Zeng, X. M.; Šljivancanin, Z.; Baldereschi, A. J. Phys. Chem. C 2010, 114, 4756.
doi: 10.1021/jp911746g |
[14] |
Wang, T.; Wang, W.; Zhu, D.; Duan, X. -B.; Wei, Z. -Q.; Chen, Y. -G. Chin. J. Inorg. Chem. 2014, 30, 2461 (in Chinese.)
doi: 10.1002/cjoc.201200581 |
( 王婷, 王弯, 朱丁, 段晓波, 魏治乾, 陈云贵, 无机化学学报, 2014, 30, 2461.)
|
|
[15] |
Bi, Z.; Zhao, N.; Ma, L.; Shi, C.; Guo, X. J. Mater. Chem. A 2020, 8, 4252.
doi: 10.1039/C9TA11203K |
[16] |
Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.
doi: 10.1016/0927-0256(96)00008-0 |
[17] |
Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
pmid: 9984901 |
[18] |
Shi, S. Q.; Gao, J.; Liu, Y.; Zhao, Y.; Wu, Q.; Ju, W. W.; Ouyang, C.; Xiao, R. J. Chinese Phys. B 2016, 25, 018212.
doi: 10.1088/1674-1056/25/1/018212 |
[19] |
Wang, J.; Zhang, Z.; Zhang, Y. N.; Han, D.; Jin, L. L.; Sheng, L. Y.; Chartrand, P.; Medraj, M. Mater. Lett. 2019, 256, 126628.
doi: 10.1016/j.matlet.2019.126628 |
[20] |
Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. JOM 2013, 65, 1501.
doi: 10.1007/s11837-013-0755-4 |
[21] |
Kirklin, S.; Meredig, B.; Wolverton, C. Adv. Energy Mater. 2013, 3, 252.
doi: 10.1002/aenm.v3.2 |
[22] |
Vallverdu, G.; Minvielle, M.; Andreu, N.; Gonbeau, D.; Baraille, I. Surf. Sci. 2016, 649, 46.
doi: 10.1016/j.susc.2016.01.004 |
[23] |
Shukla, A.; Gaur, N. K.; Ghosh, P. Appl. Surf. Sci. 2020, 527, 146703.
doi: 10.1016/j.apsusc.2020.146703 |
[24] |
Ouyang, C. Y.; Shi, S. Q.; Lei, M. S. J. Alloys Compd. 2009, 474, 370.
doi: 10.1016/j.jallcom.2008.06.123 |
[25] |
Tomeno, I.; Kasuya, Y.; Tsunoda, Y. Phys. Rev. B 2001, 64, 115.
|
[26] |
Singh, G.; Gupta, S. L.; Prasad, R.; Auluck, S.; Gupta, R.; Sil, A. J. Phys. Chem. Solids 2009, 70, 1200.
doi: 10.1016/j.jpcs.2009.07.001 |
[27] |
Singh, P.; Sil, A.; Nath, M.; Ray, S. J. Electrochem. Soc. 2010, 157, 259.
doi: 10.1149/1.3273195 |
[28] |
Lee, Y. K. Ph.D. Dissertation, The University of Michigan, United States, 2015.
|
[29] |
Garcia, J. C.; Bareo, J.; Chen, G.; Croy, J. R.; Iddir, H. Phys. Chem. Chem. Phys. 2020, 22, 24490.
doi: 10.1039/D0CP03942J |
[30] |
Yan, P.; Nie, A.; Zheng, J.; Zhou, Y.; Lu, D.; Zhang, X.; Xu, R.; Belharouak, I.; Zu, X.; Xiao, J. Nano Lett. 2015, 15, 514.
doi: 10.1021/nl5038598 |
[31] |
Qian, K.; Tang, L. K.; Wagemaker, M.; He, Y. B.; Liu, D. Q.; Li, H.; Shi, R. Y.; Li, B. H.; Kang, F. Y. Adv. Sci. 2017, 4, 1700205.
doi: 10.1002/advs.201700205 |
[32] |
Xu, C.; Märker, K.; Lee, J. H.; Mahadevegowda, A.; Reeves, P. J.; Day, S. J.; Groh, M. F.; Emge, S. P.; Ducati, C.; Layla, M. B.; Tang, C. C.; Grey, C. P. Nat. Mater. 2020, 20, 1.
doi: 10.1038/s41563-020-00895-z |
[33] |
Chen, J.; Wu, X. P.; Hope, M. A.; Qian, K.; Peng, L. Nat. Commun. 2019, 10, 5420.
doi: 10.1038/s41467-019-13424-7 |
[34] |
Rasmussen, M. K.; Meinander, K.; Besenbacher, F.; Lauritsen, J. V. Beilstein J. Nanotechnol. 2012, 3, 192.
doi: 10.3762/bjnano.3.21 |
[35] |
Yoo, S. H.; Todorova, M.; Neugebauer, J. R. Phys. Rev. Lett. 2018, 120, 066101.
doi: 10.1103/PhysRevLett.120.066101 |
[36] |
Kim, S.; Aykol, M.; Wolverton, C. Phys. Rev. B 2015, 92, 115411.
doi: 10.1103/PhysRevB.92.115411 |
[37] |
Fu, C. C.; Wang, J. Y.; Wang, J. F.; Meng, L. L.; Zhang, W. M.; Li, X. T.; Li, L. P. J. Mater. Chem. A 2019, 7, 23149.
doi: 10.1039/C9TA09327C |
[38] |
Julien, C. M.; Zaghib, K. Electrochim. Acta 2004, 50, 411.
doi: 10.1016/j.electacta.2004.03.052 |
[39] |
Fu, K. M.S. Thesis, University of Pittsburgh, United States. 2014.
|
[40] |
Yu, F. D.; Wang, Z. B.; Chen, F.; Jin, W.; Zhang, X. G.; Gu, D. M. J. Power Sources 2014, 262, 104.
doi: 10.1016/j.jpowsour.2014.03.120 |
[1] | 郭瑞, 魏星, 曹末云, 张研, 杨云, 樊继斌, 刘剑, 田野, 赵泽坤, 段理. AlAs/InSe范德华异质结构的光学和可调谐电子特性[J]. 化学学报, 2022, 80(4): 526-534. |
[2] | 邱凯, 严铭霞, 赵守旺, 安胜利, 王玮, 贾桂霄. Al掺杂的锂离子电池层状正极材料Li(Li0.17Ni0.17Al0.04Fe0.13Mn0.49)O2结构稳定性及氧离子氧化的理论研究[J]. 化学学报, 2021, 79(9): 1146-1153. |
[3] | 梁其梅, 郭昱娇, 郭俊明, 向明武, 刘晓芳, 白玮, 宁平. 亚微米去顶角八面体LiNi0.08Mn1.92O4正极材料制备及高温电化学性能[J]. 化学学报, 2021, 79(12): 1526-1533. |
[4] | 万洋, 郑荞佶, 赁敦敏. 锂离子电池正极材料磷酸锰锂研究进展[J]. 化学学报, 2014, 72(5): 537-551. |
[5] | 吴其胜, 王子路, 王金兰. 单轴应变对石墨烯掺杂硼、氮、铝、硅、磷的影响与调控[J]. 化学学报, 2014, 72(12): 1233-1237. |
[6] | 刘媛媛. 新型光催化材料石墨炔-TiO2的第一性原理研究[J]. 化学学报, 2013, 71(02): 260-264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||