化学学报 ›› 2023, Vol. 81 ›› Issue (4): 371-380.DOI: 10.6023/A23010003 上一篇 下一篇
研究论文
梁攀a,b, 张宏淑a, 黄宏升c, 李飒英a, 张笑恬a, 王英a, 李连庆a,*(), 刘志宏b,*()
投稿日期:
2023-01-05
发布日期:
2023-02-21
基金资助:
Pan Lianga,b, Hongshu Zhanga, Hongsheng Huangc, Saying Lia, Xiaotian Zhanga, Ying Wanga, Lianqing Lia,*(), Zhihong Liub,*()
Received:
2023-01-05
Published:
2023-02-21
Contact:
* E-mail: Supported by:
文章分享
目前, 高效窄带荧光粉的研发对于白光发光二极管(WLED)向高性能液晶显示器背光源的应用至关重要. 本工作采用高温固相法制备了一种高效窄带蓝色荧光粉Ba3Y2B6O15:Bi3+, 并对其结构和性能进行了表征和计算. 计算表明, Ba3Y2B6O15的带隙较宽, 为4.67 eV, 宽的带隙为高效率荧光粉提供了保障. Ba3Y2B6O15:0.5%Bi3+ (0.5%为摩尔分数)的发射光谱峰值在409 nm, 半峰宽仅为2168 cm−1 (36.2 nm), 属于窄带蓝光发射. Ba3Y2B6O15:0.5%Bi3+的内量子效率高达93.8%, 色纯度也高达98.9%, 其热稳定性能也较好, 在150 ℃时的发光强度是室温发光强度的73.9%, 且几乎没有色漂移. 当Y被Sc部分取代时, Ba3ScxY2-xB6O15:Bi3+(0≤x≤1.6)的发射光谱随着x的增大而发生红移. 最终, 将蓝色荧光粉Ba3Y2B6O15:0.5%Bi3+与商品化的红绿两种荧光粉混合均匀后涂在365 nm的芯片上制成WLED, 在20 mA的电流驱动下, 得到的WLED相关色温为5679 K, 色域可达95.3% NTSC((美国)国家电视标准委员会).
梁攀, 张宏淑, 黄宏升, 李飒英, 张笑恬, 王英, 李连庆, 刘志宏. 一种高效窄带蓝色荧光粉Ba3Y2B6O15:Bi3+及其应用研究[J]. 化学学报, 2023, 81(4): 371-380.
Pan Liang, Hongshu Zhang, Hongsheng Huang, Saying Li, Xiaotian Zhang, Ying Wang, Lianqing Li, Zhihong Liu. An Efficient Narrow-band Blue-emitting Phosphor Ba3Y2B6O15:Bi3+ and Its Application[J]. Acta Chimica Sinica, 2023, 81(4): 371-380.
Parameter | Value | ||
---|---|---|---|
Formula | Ba3Y2B6O15 | Ba3ScYB6O15a | Ba3YScB6O15b |
Crystal system | Cubic | Cubic | Cubic |
Space group | Ia$ \overline{3} $ | Ia$ \overline{3} $ | Ia$ \overline{3} $ |
a | 1.42530 nm | 1.40940 nm | 1.40941 nm |
Volume | 2.895469 nm3 | 2.799634 nm3 | 2.799712 nm3 |
Rp | — | 9.06 | 9.22 |
Rwp | — | 11.7 | 11.8 |
Chi2 | — | 2.22 | 2.29 |
Parameter | Value | ||
---|---|---|---|
Formula | Ba3Y2B6O15 | Ba3ScYB6O15a | Ba3YScB6O15b |
Crystal system | Cubic | Cubic | Cubic |
Space group | Ia$ \overline{3} $ | Ia$ \overline{3} $ | Ia$ \overline{3} $ |
a | 1.42530 nm | 1.40940 nm | 1.40941 nm |
Volume | 2.895469 nm3 | 2.799634 nm3 | 2.799712 nm3 |
Rp | — | 9.06 | 9.22 |
Rwp | — | 11.7 | 11.8 |
Chi2 | — | 2.22 | 2.29 |
Atom | x | y | z | B | Occ | Mult |
---|---|---|---|---|---|---|
Ba | 0.36801 | 0.00000 | 0.25000 | 1.073 | 0.500 | 24 |
Sc | 0.00000 | 0.00000 | 0.50000 | 1.864 | 0.167 | 8 |
Y | 0.25000 | 0.25000 | 0.25000 | 0.000 | 0.167 | 8 |
B | 0.12284 | 0.06192 | 0.30846 | 2.555 | 1.00 | 48 |
O1 | 0.03270 | 0.04157 | 0.33679 | 1.103 | 1.00 | 48 |
O2 | 0.15503 | 0.00000 | 0.25000 | 4.058 | 0.50 | 24 |
O3 | 0.15752 | 0.14748 | 0.31299 | 0.000 | 1.00 | 48 |
Atom | x | y | z | B | Occ | Mult |
---|---|---|---|---|---|---|
Ba | 0.36801 | 0.00000 | 0.25000 | 1.073 | 0.500 | 24 |
Sc | 0.00000 | 0.00000 | 0.50000 | 1.864 | 0.167 | 8 |
Y | 0.25000 | 0.25000 | 0.25000 | 0.000 | 0.167 | 8 |
B | 0.12284 | 0.06192 | 0.30846 | 2.555 | 1.00 | 48 |
O1 | 0.03270 | 0.04157 | 0.33679 | 1.103 | 1.00 | 48 |
O2 | 0.15503 | 0.00000 | 0.25000 | 4.058 | 0.50 | 24 |
O3 | 0.15752 | 0.14748 | 0.31299 | 0.000 | 1.00 | 48 |
Phosphor | IQE/% | FWHM/nm | CP/% | Reference |
---|---|---|---|---|
BaMgAl10O17:Eu2+ a | 92.4 | 51.7 | 88.0 | [ |
Sr5(PO4)3Cl:Eu2+ b | 80.5 | ≈40 | 99.0 | [ |
Ba3Lu2B6O15:0.5%Bi3+ | 90.6 | 35.5 | 97.8 | [ |
Ba3Y2B6O15:0.5%Bi3+ | 93.8 | 36.2 | 98.9 | This work |
Phosphor | IQE/% | FWHM/nm | CP/% | Reference |
---|---|---|---|---|
BaMgAl10O17:Eu2+ a | 92.4 | 51.7 | 88.0 | [ |
Sr5(PO4)3Cl:Eu2+ b | 80.5 | ≈40 | 99.0 | [ |
Ba3Lu2B6O15:0.5%Bi3+ | 90.6 | 35.5 | 97.8 | [ |
Ba3Y2B6O15:0.5%Bi3+ | 93.8 | 36.2 | 98.9 | This work |
x值 | IQE/% | Abs | EQE/% |
---|---|---|---|
0 | 93.8 | 0.337 | 31.6 |
0.2 | 78.5 | 0.352 | 27.6 |
0.4 | 84.2 | 0.344 | 29.0 |
0.6 | 90.4 | 0.283 | 25.6 |
0.8 | 81.6 | 0.316 | 25.8 |
1.0 | 86.2 | 0.227 | 19.6 |
1.2 | 74.7 | 0.220 | 16.4 |
1.4 | 65.7 | 0.223 | 14.7 |
1.6 | 54.2 | 0.259 | 14.0 |
x值 | IQE/% | Abs | EQE/% |
---|---|---|---|
0 | 93.8 | 0.337 | 31.6 |
0.2 | 78.5 | 0.352 | 27.6 |
0.4 | 84.2 | 0.344 | 29.0 |
0.6 | 90.4 | 0.283 | 25.6 |
0.8 | 81.6 | 0.316 | 25.8 |
1.0 | 86.2 | 0.227 | 19.6 |
1.2 | 74.7 | 0.220 | 16.4 |
1.4 | 65.7 | 0.223 | 14.7 |
1.6 | 54.2 | 0.259 | 14.0 |
[1] |
Liang, P.; Lian, W. L.; Liu, Z. H. Chem.-Eur. J. 2021, 27, 13819.
doi: 10.1002/chem.v27.55 |
[2] |
Liang, P.; Lian, W. L.; Liu, Z. H. Chem. Commun. 2021, 57, 3371.
doi: 10.1039/D0CC08027F |
[3] |
Liang, P.; Li, L. Q.; Shen, T.; Lian, W. L; Liu, Z. H. J. Rare Earth. doi,10.1016/j.jre.2022.02.001
doi: 10.1016/j.jre.2022.02.001 |
[4] |
Zhao, M.; Liao, H. X.; Xia, Z. G. J. Chin. Soc. Rare Earth. 2020, 38, 257. (in Chinese)
|
(赵鸣, 廖泓旭, 夏志国, 中国稀土学报, 2020, 38, 257).
|
|
[5] |
Fang, M. H.; Leaño, J. L.; Liu, R. S. ACS Energy. Lett. 2018, 3, 2573.
doi: 10.1021/acsenergylett.8b01408 |
[6] |
Liu, W.; Song, E.; Cheng, L.; Song, L.; Xie, J.; Li, G.; Zhang, Y.; Wang, Y.; Wang, Y.; Xia, Z.; Chai, Z.; Wang, S. Chem. Mater. 2019, 31, 9684.
doi: 10.1021/acs.chemmater.9b03130 |
[7] |
Meijerink, A. Sci. China. Mater. 2019, 62, 146.
doi: 10.1007/s40843-018-9370-4 |
[8] |
Strobel, P.; Maak, C.; Weiler, V.; Schmidt, P. J.; Schnick, W. Angew. Chem. Int. Ed. 2018, 57, 8739.
doi: 10.1002/anie.v57.28 |
[9] |
Liao, H.; Zhao, M.; Molokeev, M. S.; Liu, Q.; Xia, Z. Angew. Chem. Int. Ed. 2018, 130, 11902.
doi: 10.1002/ange.201807087 |
[10] |
Wendl, S.; Eisenburger, L.; Strobel, P.; Gunther, D.; Wright, J. P.; Schmidt, P. J.; Oeckler, O.; Schnick, W. Chem.-Eur. J. 2020, 26, 7292.
doi: 10.1002/chem.v26.32 |
[11] |
Li, S.; Wang, L.; Tang, D.; Cho, Y.; Liu, X.; Zhou, X.; Lu, L.; Zhang, L.; Takeda, T.; Hirosaki, N.; Xie, R. J. Chem. Mater. 2018, 30, 494.
doi: 10.1021/acs.chemmater.7b04605 |
[12] |
Zhao, M.; Liao, H.; Ning, L.; Zhang, Q.; Liu, Q.; Xia, Z. Adv. Mater. 2018, 30, 1802489.
doi: 10.1002/adma.v30.38 |
[13] |
Liao, H.; Zhao, M.; Zhou, Y.; Molokeev, M. S.; Liu, Q.; Zhang, Q.; Xia, Z. Adv. Funct. Mater. 2019, 29, 1901988.
doi: 10.1002/adfm.v29.30 |
[14] |
Zhao, M.; Cao, K.; Liu, M.; Zhang, J.; Chen, R.; Zhang, Q.; Xia, Z. Angew. Chem. Int. Ed. 2020, 59, 12938.
doi: 10.1002/anie.v59.31 |
[15] |
Takeda, T.; Hirosaki, N.; Funahshi, S.; Xie, R. J. Chem. Mater. 2015, 27, 5892.
doi: 10.1021/acs.chemmater.5b01464 |
[16] |
Wang, W.; Yang, H.; Fu, M. Q.; Zhang, X. Y.; Guan, M. Y.; Wei, Y.; Lin, C. C.; Li, G. G. Chem. Eng. J. 2021, 415, 128979.
doi: 10.1016/j.cej.2021.128979 |
[17] |
Wu, Z.; Li, C.; Zhang, F.; Huang, S.; Wang, F.; Wang, X.; Jiao, H. J. Mater. Chem. C 2022, 10, 7443.
doi: 10.1039/D2TC00850E |
[18] |
Fang, M. H.; Tsai, Y. T.; Sheu, H. S.; Lee, J. F.; Liu, R. S. J. Mater. Chem. C 2018, 6, 10174.
doi: 10.1039/C8TC03025A |
[19] |
Schmiechen, S.; Strobel, P.; Hecht, C.; Reith, T.; Siegert, M.; Schmidt, P. J.; Huppertz, P.; Wiechert, D.; Schnick, W. Chem. Mater. 2015, 27, 1780.
doi: 10.1021/cm504604d |
[20] |
Pust, P.; Wochnik, A. S.; Baumann, E.; Schmidt, P. J.; Wiechert, D.; Scheu, C.; Schnick, W. Chem. Mater. 2014, 26, 3544.
doi: 10.1021/cm501162n |
[21] |
Pust, P.; Weiler, V.; Hecht, C.; Tucks, A.; Wochnik, A. S.; Henβ, A. K.; Wiechert, D.; Scheu, C.; Schmidt, P. J.; Schnick W. Nat. Mater. 2014, 13, 891.
doi: 10.1038/nmat4012 |
[22] |
Zhou, Y.; Zhang, S.; Wang, X.; Jiao, H. Inorg. Chem. 2019, 58, 4412.
doi: 10.1021/acs.inorgchem.8b03577 |
[23] |
Hou, Z.; Tang, X.; Luo, X.; Zhou, T.; Zhang, L.; Xie, R. J. J. Mater. Chem. C 2018, 6, 2741.
doi: 10.1039/C8TC00133B |
[24] |
Amidani, L.; Korthout, K.; Joos, J. J.; van der Linden, M.; Sijbom, H. F.; Meijerink, A.; Poelman, D.; Smet, P. F.; Glatzel, P. Chem. Mater. 2017, 29, 10122.
doi: 10.1021/acs.chemmater.7b03918 |
[25] |
Kang, F.; Zhang, H.; Wondraczek, L.; Yang, X.; Zhang, Y.; Lei, D. Y.; Peng, M. Chem. Mater. 2016, 28, 2692.
doi: 10.1021/acs.chemmater.6b00277 |
[26] |
Zhao, D.; Li, Y. N.; Zhang, R. J.; Liu, B. Z.; Yao, Q. X. ACS Sustain. Chem. Eng. 2021, 9, 7569.
doi: 10.1021/acssuschemeng.1c01396 |
[27] |
Li, H.; Pang, R.; Luo, Y.; Wu, H.; Zhang, S.; Jiang, L.; Li, D.; Li, C.; Zhang, H. ACS Appl. Electron. Mater. 2019, 1, 229.
doi: 10.1021/acsaelm.8b00072 |
[28] |
Lou, B. B.; Yin, M. Chin. J. Lumin. 2022, 43, 1446. (in Chinese)
|
(楼碧波, 尹民, 发光学报, 2022, 43, 1446).
|
|
[29] |
Li, H.; Wu, H.; Pang, R.; Liu, G.; Zhang, S.; Jiang, L.; Li, D.; Li, C.; Feng, J.; Zhang, H. J. Mater. Chem. C 2021, 9, 1786.
doi: 10.1039/D0TC05122E |
[30] |
Fu, Y. B.; Wang, X.; Peng, M. Y. J. Mater. Chem. C 2020, 8, 6079.
doi: 10.1039/C9TC06777A |
[31] |
Wang, X.; Wang, J.; Li, X.; Luo, H.; Peng, M. J. Mater. Chem. C 2019, 7, 11227.
doi: 10.1039/c9tc03729b |
[32] |
Han, J.; Pan, F.; Molokeev, M. S.; Dai, J.; Peng, M.; Zhou, W.; Wang, J. ACS Appl. Mater. Inter. 2018, 10, 13660.
doi: 10.1021/acsami.8b00808 |
[33] |
Ye, S.; Liu, H.; Wang, Y. ; Lin, J.; Zhong, K.; Ding, J.; Wu, Q. ACS Sustain. Chem. Eng. 2020, 8, 18187.
doi: 10.1021/acssuschemeng.0c06593 |
[34] |
Xiao, Y. Q.; Chen, P.; Zhu, Y. H.; Zhang, N.; Zhuo, N. Z. J. Chin. Soc. Rare. Earth. 2020, 38, 724. (in Chinese)
|
(肖勇强, 陈鹏, 朱月华, 张娜, 卓宁泽, 中国稀土学报, 2020, 38, 724).
|
|
[35] |
Wang, S.; Wu, H.; Fan, Y.; Wang, Q.; Tan, T.; Pang, R.; Zhang, S.; Li, D.; Jiang, L.; Li, C.; Zhang, H. Chem. Eng. J. 2022, 432, 134265.
doi: 10.1016/j.cej.2021.134265 |
[36] |
Pan, J.; Guo, Z.; Zhu, Z.; Sun, Z.; Zhang, T.; Zhang, J.; Zhang, X. Ceram. Int. 2018, 44, 20732.
doi: 10.1016/j.ceramint.2018.08.068 |
[37] |
Wu, P. P.; Tong, X. B.; Xu, Y.; Han, J.; Seo, Y. J.; Zhang, X. M. Opt. Mater. 2019, 91, 246.
doi: 10.1016/j.optmat.2019.03.030 |
[38] |
Duke, A. C.; Hariyani, S.; Brgoch, J. Chem. Mater. 2018, 30, 2668.
doi: 10.1021/acs.chemmater.8b00111 |
[39] |
Annadurai, G.; Li, B.; Devakumar, B.; Guo, H.; Sun, L.; Huang, X. J. Lumin. 2019, 208, 75.
doi: 10.1016/j.jlumin.2018.12.028 |
[40] |
Zhao, S.; Yao, J.; Zhang, G.; Fu, P.; Wu, Y. Acta. Crystallogr. C 2011, 67, 39.
|
[41] |
Wei, Y.; Li, G. G. Chin. J. Lumin. 2021, 42, 1365. (in Chinese)
|
(魏忆, 李国岗, 发光学报, 2021, 42, 1365).
|
|
[42] |
Smeacetto, F.; Salvo, M.; Ajitdoss, L. C.; Perero, S.; Moskalewicz, T.; Boldrini, S.; Doubova, L.; Ferraris, M. Mater. Lett. 2010, 64, 2450.
doi: 10.1016/j.matlet.2010.08.016 |
[43] |
Brik, M. G.; Srivastava, A. M.; Popov, A. I. Opt. Mater. 2022, 127, 112276
doi: 10.1016/j.optmat.2022.112276 |
[44] |
Wang, B.; Lin, H.; Huang, F.; Xu, J.; Chen, H.; Lin, Z. B.; Wang, Y. S. Chem. Mater. 2016, 28, 3515.
doi: 10.1021/acs.chemmater.6b01303 |
[45] |
Fu, S. Y.; Zhu, Y. C.; Ma, Y. S.; Yao, Y.; Wang, Z. J.; Suo, H.; Wang, D. W.; Yang, Z. P.; Zhao, J. X.; Li, P. L. Chin. J. Lumin. 2022, 43, 1078. (in Chinese)
|
(付素月, 朱烨程, 马颖珊, 姚瑶, 王志军, 索浩, 王大伟, 杨志平, 赵金鑫, 李盼来, 发光学报, 2022, 43, 1078).
|
|
[46] |
Wei, Y.; Gao, Z.; Yun, X.; Yang, H.; Liu, Y.; Li, G. Chem. Mater. 2020, 32, 8747.
doi: 10.1021/acs.chemmater.0c02814 |
[47] |
Lephoto, M. A.; Tshabalala, K. G.; Motloung, S. J.; Mhlongo, G. H.; Ntwaeaborwa, O. M. J. Lumin. 2018, 200, 94.
doi: 10.1016/j.jlumin.2018.04.014 |
[48] |
Li, X.; Li, P.; Wang, Z.; Liu, S.; Bao, Q.; Meng, X.; Qiu, K.; Li, Y.; Li, Z.; Yang, Z. Chem. Mater. 2017, 29, 8792.
doi: 10.1021/acs.chemmater.7b03151 |
[49] |
Lian, M. B.; Ye, Z. C.; Mu, Y. X.; Hu, D. H.; Liu, Y.; Zhang, H. L.; Ji, S. M.; Huo, Y. P. Chin. J. Org. Chem. 2023, 43, 573. (in Chinese)
doi: 10.6023/cjoc202207042 |
(连铭槟, 叶泽聪, 穆英啸, 胡德华, 刘源, 张浩力, 籍少敏, 霍延平, 有机化学, 2023, 43, 573.)
doi: 10.6023/cjoc202207042 |
|
[50] |
Zheng, J. H.; Chen, Q. J.; Wu, S. Q.; Guo, Z. Q.; Zhuang, Y. X.; Lu, Y. J.; Li, Y.; Chen, C. J. Mater. Chem. C 2015, 3, 11219.
doi: 10.1039/C5TC02482J |
[51] |
Zhang, Y.; Yang, C.; Feng, J.; Wang, N.; Li, Q.; Guo, F. W.; Wang, J.; Xu, D. S. Sci. China Chem. 2021, 51, 967. (in Chinese)
|
(张宇, 杨创, 冯静, 王楠, 李琦, 郭枫晚, 王娟, 徐东升, 中国科学:化学, 2021, 51, 967).
|
|
[52] |
Zhang, J. R.; Huang, D. C.; Huang, C. C.; Liang, S. S.; Zhu, H. M. Acta Chim. Sinica 2022, 80, 453. (in Chinese)
doi: 10.6023/A21120598 |
(张景荣, 黄得财, 黄聪聪, 梁思思, 朱浩淼, 化学学报, 2022, 80, 453).
doi: 10.6023/A21120598 |
|
[53] |
Zhu, J. J.; Luo, L. H.; Du, P.; Xue, J. P. Chin. J. Inorg. Chem. 2022, 38, 244. (in Chinese)
|
(朱久军, 罗来慧, 杜鹏, 薛俊鹏, 无机化学学报, 2022, 38, 244).
|
|
[54] |
Li, Q.; Chen, C.; Shen, B.; Yu, B.; Zhang, Y. J. Lumin. 2021, 237, 118196.
doi: 10.1016/j.jlumin.2021.118196 |
[55] |
Zhuo, Y.; Tehrani, A. M.; Oliynyk, A. O.; Duke, A. C.; Brgoch, J. Nat. Commun. 2018, 9, 4377.
doi: 10.1038/s41467-018-06625-z pmid: 30348949 |
[56] |
Zhong, J.; Zhao, W.; Zhuo, Y.; Yan, C.; Wen, J.; Brgoch, J. J. Mater. Chem. C 2019, 7, 654.
doi: 10.1039/C8TC05629C |
[57] |
Xia, Z.; Molokeev, M. S.; Im, W. B.; Unithrattil, S.; Liu, Q. J. Phys. Chem. C 2015, 119, 9488.
doi: 10.1021/acs.jpcc.5b01211 |
[58] |
Perdew, J. P.; Yue, W. Phys. Rev. B 1986, 33, 8800.
pmid: 9938293 |
[59] |
Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
doi: 10.1103/PhysRevB.33.8822 |
[60] |
Langreth, D. C.; Perdew, J. P. Phys. Rev. B 1980, 21, 5469.
doi: 10.1103/PhysRevB.21.5469 |
[61] |
Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
doi: 10.1103/PhysRevB.13.5188 |
[62] |
Kresse, G.; Hafne, J. J. Phys.-Condens. Mat. 1994, 6, 8245.
doi: 10.1088/0953-8984/6/40/015 |
[63] |
Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
doi: 10.1103/physrevb.54.11169 pmid: 9984901 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||