化学学报 ›› 2023, Vol. 81 ›› Issue (4): 381-392.DOI: 10.6023/A23010013 上一篇 下一篇
综述
投稿日期:
2023-01-17
发布日期:
2023-03-03
作者简介:
韩明亮, 2018年博士毕业于南开大学, 获有机化学博士学位. 2019年至2021年在上海药物所(和深圳大学合作)从事博士后研究, 2021年进入浙江大学(和杭州中美华东制药有限公司合作)从事博士后研究. 主要从事功能性有机小分子化合物的设计、合成, 以及过渡金属催化的硫酯的有机合成方法研究. |
Mingliang Hana,b,*(), Lihua Xub
Received:
2023-01-17
Published:
2023-03-03
Contact:
* E-mail: 文章分享
硫酯在医药、农药、香精香料、材料等领域应用广泛, 可从羧酸衍生得到, 羧酸在自然界寻常可见、结构丰富. 硫酯C(O)—S键能轻易和低价过渡金属发生氧化加成生成C(O)—M—S, 该物种在不脱羰或脱羰情况下可以和亲核试剂反应构建碳碳键. 近二十年来, 人们广泛研究了过渡金属催化的硫酯的交叉偶联反应, 这为从羧酸出发构筑C—C键提供了可供选择的有效方案. 本综述按照过渡金属种类, 依次对钯、镍、铜、铑等过渡金属催化的硫酯的交叉偶联反应进行了总结和讨论, 综述了该类反应在天然产物、药物分子合成及其后期转化中的应用. 同时关注了近些年报道的硫酯的不对称交叉偶联反应, 以及硫酯的交叉偶联反应在串联反应和官能团转化方面的应用.
韩明亮, 徐丽华. 过渡金属催化的硫酯的交叉偶联反应研究进展[J]. 化学学报, 2023, 81(4): 381-392.
Mingliang Han, Lihua Xu. Progress on the Transition Metal-catalyzed Cross-coupling Reaction of Thioesters[J]. Acta Chimica Sinica, 2023, 81(4): 381-392.
[1] |
Pietrocola, F.; Galluzzi, L.; Bravo-San Pedro, J. M.; Madeo, F.; Kroemer, G. Cell Metab. 2015, 21, 8051.
|
[2] |
(a) Wang, N. Z.; Saidhareddy, P.; Jiang, X. F. Nat. Prod. Rep. 2020, 37, 246.
doi: 10.1039/C8NP00093J |
(b) Adamczyk, M.; Fishpaugh, J. R. Tetrahedron Lett. 1996, 37, 4305.
|
|
(c) Wang, M.; Wang, C. H.; Jiang, X. F. Chin. J. Org. Chem. 2019, 39, 2139. (in Chinese)
doi: 10.6023/cjoc201903069 |
|
(王明, 王翠红, 姜雪峰, 有机化学, 2019, 39, 2139).
|
|
(d) Ye, Q.; Cao, W. G.; Gao, J. S. Chin. J. Org. Chem. 2001, 21, 697. (in Chinese)
|
|
(叶青, 曹卫国, 高金森, 有机化学, 2001, 21, 697.)
|
|
(e) Aksakal, S.; Aksakal, R.; Becer, C. R. Polym. Chem. 2018, 9, 4507.
doi: 10.1039/C8PY00872H |
|
[3] |
(a) Huxtable, R. J. Biochemistry of Sulfur, Springer, Boston, 1986, p. 220.
|
(b) Wang, X. C.; Ji, Z. Y.; Liu, J.; Wang, B. F.; Jin, H.; Zhang, L. X. Acta Chim. Sinica 2023, 81, 64. (in Chinese)
doi: 10.6023/A22100422 |
|
(王晓晨, 季泽尧, 刘健, 王炳福, 金辉, 张立新, 化学学报, 2023, 81, 64).
doi: 10.6023/A22100422 |
|
[4] |
Staunton, J.; Weissman, K. J. Nat. Prod. Rep. 2001, 18, 380.
doi: 10.1039/a909079g |
[5] |
(a) Fukuyama, T.; Tokuyama, H. Aldrichimica Acta 2004, 37, 87.
|
(b) Fukuyama, T.; Lin, S. C.; Li, L. J. Am. Chem. Soc. 1990, 112, 7050.
doi: 10.1021/ja00175a043 |
|
(c) Tokuyama, H.; Yokoshima, S.; Lin, S. C.; Li, L.; Fukuyama, T. Synthesis 2002, 8, 1121.
|
|
(d) Kimura, M.; Seki, M. Tetrahedron Lett. 2004, 45, 3219.
doi: 10.1016/j.tetlet.2004.02.130 |
|
(e) Asadi, M.; Bonke, S.; Polyzos, A.; Lupton, D. W. ACS Catal. 2014, 4, 2070.
doi: 10.1021/cs5004917 |
|
[6] |
(a) Osakada, K.; Yamamoto, T.; Yamamoto, A. Tetrahedron Lett. 1987, 28, 6321.
doi: 10.1016/S0040-4039(01)91363-2 pmid: 29215288 |
(b) Kato, T.; Kuniyasu, H.; Kajiura, T.; Minami, Y.; Ohtaka, A.; Kinomoto, M.; Terao, J.; Kurosawa, H.; Kambe, N. Chem. Commun. 2006, 868.
pmid: 29215288 |
|
(c) Ishitobi, K.; Isshiki, R.; Asahara, K. K.; Lim, C.; Muto, K.; Yamaguchi, J. Chem. Lett. 2018, 47, 756.
doi: 10.1246/cl.180226 pmid: 29215288 |
|
(d) Ichiishi, N.; Malapit, C. A.; Wozniak, Ł.; Sanford, M. S. Org. Lett. 2018, 20, 44.
doi: 10.1021/acs.orglett.7b03305 pmid: 29215288 |
|
(e) Lee, S. C.; Liao, H. H.; Chatupheeraphat, A.; Rueping, M. Chem. Eur. J. 2018, 24, 3608.
doi: 10.1002/chem.201705842 pmid: 29215288 |
|
(f) Liu, C. W.; Szostak, M. Chem. Commun. 2018, 54, 2130.
doi: 10.1039/C8CC00271A pmid: 29215288 |
|
[7] |
(a) Hua, R.; Takeda, H.; Onozawa, S.; Abe, Y.; Tanaka, M. J. Am. Chem. Soc. 2001, 123, 2899.
pmid: 15998073 |
(b) Sugoh, K.; Kuniyasu, H.; Sugae, T.; Ohtaka, A.; Takai, Y.; Tanaka, A.; Machino, C.; Kambe, N.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 5108.
pmid: 15998073 |
|
(c) Toyofuku, M.; Fujiwara, S.; Shin-Ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2005, 127, 9706.
pmid: 15998073 |
|
(d) Minami, Y.; Kuniyasu, H.; Miyafuji, K.; Kambe, N. Chem. Commun. 2009, 3080.
pmid: 15998073 |
|
(e) Arisawa, M.; Tanii, S.; Yamada, T.; Yamaguchi, M. Tetrahedron 2015, 71, 6449.
doi: 10.1016/j.tet.2015.05.042 pmid: 15998073 |
|
(f) Inami, T.; Kurahashi, T.; Matsubara, S. Chem. Commun. 2015, 51, 1285.
doi: 10.1039/C4CC09123J pmid: 15998073 |
|
[8] |
(a) Prokopcová, H.; Kappe, C. O. Angew. Chem. Int. Ed. 2009, 48, 2276.
doi: 10.1002/anie.200802842 pmid: 19067446 |
(b) Cheng, H.-G.; Chen, H.; Liu, Y.; Zhou, Q. H. Asian J. Org. Chem. 2018, 7, 490.
doi: 10.1002/ajoc.v7.3 pmid: 19067446 |
|
(c) Hirschbeck, V.; Gehrtz, P. H.; Fleischer, I. Chem. Eur. J. 2018, 24, 7092.
doi: 10.1002/chem.v24.28 pmid: 19067446 |
|
[9] |
(a) Yin, L. X.; Liebscher, J. Chem. Rev. 2007, 107, 133.
doi: 10.1021/cr0505674 |
(b) Transition Metals for Organic Synthesis, 2nd ed., Eds.: Beller, M.; Bolm, C., Wiley-VCH, Weinheim, 2004.
|
|
[10] |
(a) Lou, J.; Wang, Q. N.; Wu, P.; Wang, H. M.; Zhou, Y.-G.; Yu, Z. K. Chem. Soc. Rev. 2020, 49, 4307.
doi: 10.1039/C9CS00837C |
(b) Wang, L. D.; He, W.; Yu, Z. K. Chem. Soc. Rev. 2013, 42, 599.
doi: 10.1039/C2CS35323G |
|
[11] |
Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. Tetrahedron Lett. 1998, 39, 3189.
|
[12] |
Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260.
doi: 10.1021/ja005613q |
[13] |
Chernyshev, V. M.; Ananikov, V. P. ACS Catal. 2022, 12, 1180.
doi: 10.1021/acscatal.1c04705 |
[14] |
Hayashi, Y.; Itoh, T.; Fukuyama, T. Org. Lett. 2003, 5, 2235.
pmid: 12816417 |
[15] |
Ueda, H.; Satoh, H.; Matsumoto, K.; Sugimoto, K.; Fukuyama, T.; Tokuyama, H. Angew. Chem. Int. Ed. 2009, 48, 7600.
doi: 10.1002/anie.v48:41 |
[16] |
Lee, J. H.; Kishi, Y. J. Am. Chem. Soc. 2016, 138, 7178.
doi: 10.1021/jacs.6b03897 |
[17] |
Hall, D. G. Boronic Acids, Wiley-VCH, Weinheim, 2005.
|
[18] |
Yang, S. Y.; Yu, X.; Szostak M. ACS Catal. 2023, 13, 1848.
doi: 10.1021/acscatal.2c05550 |
[19] |
Yu, Y.; Liebeskind, L. S. J. Org. Chem. 2004, 69, 3554.
doi: 10.1021/jo049964p |
[20] |
(a) Ridgway, B. H.; Woerpel, K. A. J. Org. Chem. 1998, 63, 458.
pmid: 11592890 |
(b) Rivera, I.; Colberg, J. C.; Soderquist, J. A. Tetrahedron Lett. 1992, 33, 6919.
doi: 10.1016/S0040-4039(00)60895-X pmid: 11592890 |
|
(c) Netherton, M. R.; Dai, C.; Neuschuetz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099.
pmid: 11592890 |
|
[21] |
Tsuna, K.; Noguchi, N.; Nakada, M. Tetrahedron Lett. 2011, 52, 7202.
doi: 10.1016/j.tetlet.2011.10.148 |
[22] |
Yang, H.; Li, H.; Wittenberg, R.; Egi, M.; Huang, W.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1132.
pmid: 17263394 |
[23] |
Yang, H.; Liebeskind, L. S. Org. Lett. 2007, 9, 2993.
pmid: 17608484 |
[24] |
Dandepally, S. R.; Williams, A. L. Tetrahedron Lett. 2010, 51, 5753.
doi: 10.1016/j.tetlet.2010.08.073 |
[25] |
Vasiljevik, T.; Groer, C. E.; Lehner, K.; Navarro, H.; Prisinzano, T. E. J. Nat. Prod. 2014, 77, 1817.
doi: 10.1021/np5002048 pmid: 25075762 |
[26] |
Cao, Y. F.; Li, L. J.; Liu, M.; Xu, H.; Dai, H. X. J. Org. Chem. 2020, 85, 4475.
doi: 10.1021/acs.joc.0c00198 |
[27] |
(a) O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
doi: 10.1039/B711844A |
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
doi: 10.1039/B610213C |
|
(c) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
doi: 10.1021/op700134j |
|
[28] |
Yi, X.; Cao, Y. F.; Wang, X.; Xu, H.; Ban, S. R.; Dai, H. X. Tetrahedron Lett. 2020, 61, 151780.
doi: 10.1016/j.tetlet.2020.151780 |
[29] |
Wang, M.; Dai, Z. H.; Jiang, X. F. Nat. Commun. 2019, 10, 2661.
doi: 10.1038/s41467-019-10651-w |
[30] |
Wittenberg, R.; Srogl, J.; Egi, M.; Liebeskind, L. S. Org. Lett. 2003, 5, 3033.
pmid: 12916974 |
[31] |
Saito, T.; Fuwa, H.; Sasaki, M. Org. Lett. 2009, 11, 5274.
doi: 10.1021/ol902217q |
[32] |
Fenneteau, J.; Vallerotto, S.; Ferrié, L.; Figadère, B. Tetrahedron Lett. 2015, 56, 3758.
doi: 10.1016/j.tetlet.2015.04.035 |
[33] |
Ferrié, L.; Fenneteau, J.; Figadère, B. Org. Lett. 2018, 20, 3192.
doi: 10.1021/acs.orglett.8b01020 |
[34] |
(a) Morita, A.; Kuwahara, S. Org. Lett. 2006, 8, 1613.
pmid: 16597123 |
(b) Morita, A.; Kiyota, H.; Kuwahara, S. Biosci. Biotechnol. Biochem. 2006, 70, 2564.
doi: 10.1271/bbb.60253 pmid: 16597123 |
|
[35] |
Kang, G.; Han, S. J. Am. Chem. Soc. 2022, 144, 8932.
doi: 10.1021/jacs.2c03861 |
[36] |
Pearson, R. G. Chemical Hardness, Wiley-VCH, Weinheim, 1997.
|
[37] |
Fausett, B. W.; Liebeskind, L. S. J. Org. Chem. 2005, 70, 4851.
pmid: 15932328 |
[38] |
Mehta, V. P.; Sharma, A.; Van der Eycken, E. Adv. Synth. Catal. 2008, 350, 2174.
doi: 10.1002/adsc.v350:14/15 |
[39] |
Srogl, J.; Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1997, 119, 12376.
doi: 10.1021/ja9726926 |
[40] |
Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2000, 2, 3229.
pmid: 11009388 |
[41] |
Thottumkara, A. P.; Kurokawa, T.; Du Bois, J. Chem. Sci. 2013, 4, 2686.
doi: 10.1039/c3sc50486g |
[42] |
Liu, M.; Liu, Y. W.; Xu, H.; Dai, H. X. Tetrahedron Lett. 2019, 60, 151061.
doi: 10.1016/j.tetlet.2019.151061 |
[43] |
Oost, R.; Misale, A.; Maulide, N. Angew. Chem. Int. Ed. 2016, 55, 4587.
doi: 10.1002/anie.201600597 pmid: 26945899 |
[44] |
Han, M. L.; Huang, W.; Liu, Y. W.; Liu, M.; Xu, H.; Xiong, H.; Dai, H. X. Org. Lett. 2021, 23, 172.
doi: 10.1021/acs.orglett.0c03897 |
[45] |
Huang, W.; Han, M. L.; Liu, Y. W.; Xu, H.; Dai, H. X. Chin. Chem. Lett. 2021, 32, 2765.
doi: 10.1016/j.cclet.2021.02.048 |
[46] |
(a) Medina, J. M.; Moreno, J.; Racine, S.; Du, S.; Garg, N. K. Angew. Chem., Int. Ed. 2017, 56, 6567.
doi: 10.1002/anie.201703174 pmid: 28708388 |
(b) Walker, J. A., Jr.; Vickerman, K. L.; Humke, J. N.; Stanley, L. M. J. Am. Chem. Soc. 2017, 139, 10228.
doi: 10.1021/jacs.7b06191 pmid: 28708388 |
|
(c) Kadam, A. A.; Metz, T. L.; Qian, Y.; Stanley, L. M. ACS Catal. 2019, 9, 5651.
doi: 10.1021/acscatal.9b01620 pmid: 28708388 |
|
(d) Zheng, Y.-L.; Newman, S. G. Angew. Chem., Int. Ed. 2019, 58, 18159.
doi: 10.1002/anie.v58.50 pmid: 28708388 |
|
(e) Miles, K. C.; Le, C. C.; Stambuli, J. P. Chem. - Eur. J. 2014, 20, 11336.
doi: 10.1002/chem.v20.36 pmid: 28708388 |
|
(f) Zhao, X.; Tu, H.-Y.; Guo, L.; Zhu, S.; Qing, F.-L.; Chu, L. Nat. Commun. 2018, 9, 3488.
doi: 10.1038/s41467-018-05951-6 pmid: 28708388 |
|
[47] |
Liu, M.; Wang, X.; Guo, Z.; Li, H.; Huang, W.; Xu, H.; Dai, H.-X. Org. Lett. 2021, 23, 6299.
doi: 10.1021/acs.orglett.1c02093 |
[48] |
(a) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181.
doi: 10.1038/nature14007 |
(b) Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330.
doi: 10.1021/acs.chemrev.6b00094 |
|
(c) Long, R.; Huang, J.; Gong, J.; Yang, Z. Nat. Prod. Rep. 2015, 32, 1584.
doi: 10.1039/C5NP00046G |
|
[49] |
(a) Catellani, M. Top. Organomet. Chem. 2005, 14, 21.
|
(b) Martins, A.; Mariampillai, B.; Lautens, M. Top. Curr. Chem. 2009, 292, 1.
|
|
(c) Ye, J.; Lautens, M. Nat. Chem. 2015, 7, 863.
doi: 10.1038/nchem.2372 |
|
(d) Cheng, H.-G.; Chen, S.-Q.; Chen, R.-M.; Zhou, Q.-H. Angew. Chem., Int. Ed. 2019, 58, 5832.
doi: 10.1002/anie.v58.18 |
|
(e) Wang, J.-C.; Dong, G.-B. Chem. Rev. 2019, 119, 7478.
doi: 10.1021/acs.chemrev.9b00079 |
|
[50] |
Sun, F.-G.; Li, M.; He, C.-F.; Wang, B.; Li, B.; Sui, X.-W.; Gu, Z.-H. J. Am. Chem. Soc. 2016, 138, 7456.
doi: 10.1021/jacs.6b02495 |
[51] |
(a) Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc. 2002, 124, 11250.
doi: 10.1021/ja027523m pmid: 21792454 |
(b) Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662.
doi: 10.1126/science.1128684 pmid: 21792454 |
|
(c) Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
doi: 10.1039/c1cs15093f pmid: 21792454 |
|
[52] |
Han, M. L.; Chen, J. J.; Xu, H.; Huang, Z. C.; Huang, W.; Liu, Y. W.; Wang, X.; Liu, M.; Guo, Z. Q.; Dai, H. X. JACS Au 2021, 1, 1877.
doi: 10.1021/jacsau.1c00328 |
[53] |
(a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
doi: 10.1038/nature13274 |
(b) Ananikov, V. P. ACS Catal. 2015, 5, 1964.
doi: 10.1021/acscatal.5b00072 |
|
(c) Diccianni, J. B.; Diao, T. Trends Chem. 2019, 1, 830.
doi: 10.1016/j.trechm.2019.08.004 |
|
(d) Chernyshev, V. M.; Ananikov, V. P. ACS Catal. 2022, 12, 1180.
doi: 10.1021/acscatal.1c04705 |
|
[54] |
Onaka, M.; Matsuoka, Y.; Mukaiyama, T. Chem. Lett. 1981, 10, 531.
doi: 10.1246/cl.1981.531 |
[55] |
Wotal, A. C.; Weix, D. J. Org. Lett. 2012, 14, 1476.
doi: 10.1021/ol300217x |
[56] |
Wang, J.; Cary, B. P.; Beyer, P. D.; Gellman, S. H.; Weix, D. J. Angew. Chem. Int. Ed. 2019, 58, 12081.
doi: 10.1002/anie.v58.35 |
[57] |
Shimizu, T.; Seki, M. Tetrahedron Lett. 2002, 43, 1039.
doi: 10.1016/S0040-4039(01)02296-1 |
[58] |
Zhang, Y.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 15964.
doi: 10.1021/ja044113k |
[59] |
Villalobos, J. M.; Srogl, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 15734.
doi: 10.1021/ja074931n pmid: 18047333 |
[60] |
Liebeskind, L. S.; Yang, H.; Li, H. Angew. Chem. Int. Ed. 2009, 48, 1417.
doi: 10.1002/anie.200804524 pmid: 19145620 |
[61] |
Zhang, Z. H.; Lindale, M. G.; Liebeskind, L. S. J. Am. Chem. Soc. 2011, 133, 6403.
doi: 10.1021/ja200792m |
[62] |
Kobayashi, H.; Eickhoff, J. A.; Zakarian, A. J. Org. Chem. 2015, 80, 9989.
doi: 10.1021/acs.joc.5b01558 pmid: 26378626 |
[63] |
Ochiai, H.; Uetake, Y.; Niwa, T.; Hosoya, T. Angew. Chem., Int. Ed. 2017, 56, 2482.
doi: 10.1002/anie.201611974 |
[1] | 黄家翩, 刘飞, 吴劼. 二氟环丙烯参与的有机反应研究进展★[J]. 化学学报, 2023, 81(5): 520-532. |
[2] | 王晓晨, 季泽尧, 刘健, 王炳福, 金辉, 张立新. 硫酯参与的有机催化不对称反应研究进展[J]. 化学学报, 2023, 81(1): 64-83. |
[3] | 刘霞, 匡春香, 苏长会. 过渡金属催化的1,2,3-三氮唑导向的C—H键官能团化反应研究进展[J]. 化学学报, 2022, 80(8): 1135-1151. |
[4] | 董奎, 刘强, 吴骊珠. 放氢交叉偶联反应[J]. 化学学报, 2020, 78(4): 299-310. |
[5] | 程磊, 周其林. 镍催化构筑C(sp3)—C(sp3)键反应研究进展[J]. 化学学报, 2020, 78(10): 1017-1029. |
[6] | 路福东, 姜烜, 陆良秋, 肖文精. 炔丙基自由基在有机合成化学中的应用[J]. 化学学报, 2019, 77(9): 803-813. |
[7] | 杨启亮, 王向阳, 翁信军, 杨祥, 徐学涛, 童晓峰, 方萍, 伍新燕, 梅天胜. 电氧化促进的钯催化的芳烃C(sp 2)—H键氯代反应[J]. 化学学报, 2019, 77(9): 866-873. |
[8] | 张洪浩, 俞寿云. 过渡金属与光氧化还原协同催化的烯丙基取代反应的研究进展[J]. 化学学报, 2019, 77(9): 832-840. |
[9] | 王强, 顾庆, 游书力. 过渡金属催化不对称C—H键官能团化反应构建轴手性联芳基化合物研究进展[J]. 化学学报, 2019, 77(8): 690-704. |
[10] | 安伦, 童非非, 张新刚. 铁催化下二芳基锌和芳基格氏试剂的二氟烷基化反应[J]. 化学学报, 2018, 76(12): 977-982. |
[11] | 鲁鸿, 刘金宇, 李红玉, 许鹏飞. 氮杂环卡宾与过渡金属共催化反应研究进展[J]. 化学学报, 2018, 76(11): 831-837. |
[12] | 张毛毛, 骆元元, 陆良秋, 肖文精. 过渡金属与有机小分子协同催化的不对称烯丙基取代反应研究进展[J]. 化学学报, 2018, 76(11): 838-849. |
[13] | 周锵, 陆平. 手性路易斯碱和过渡金属协同催化反应的进展[J]. 化学学报, 2018, 76(11): 825-830. |
[14] | 李娅琼, 黄志真. 过渡金属催化和有机小分子参与的α,β-不饱和酮与烯丙醇的Morita-Baylis-Hillman反应[J]. 化学学报, 2017, 75(3): 280-283. |
[15] | 赵文静, 乔增莹, 段中余, 王浩. pH和氧化双响应性聚β硫酯化合物的制备及其聚集性质的研究[J]. 化学学报, 2016, 74(3): 234-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||