化学学报 ›› 2023, Vol. 81 ›› Issue (4): 359-370.DOI: 10.6023/A22120487 上一篇 下一篇
所属专题: 有机氟化学合集
研究论文
投稿日期:
2022-12-04
发布日期:
2023-03-09
基金资助:
Xin Lv, Yi Wu, Boran Zhang, Wei Guo*()
Received:
2022-12-04
Published:
2023-03-09
Contact:
* E-mail: Supported by:
文章分享
基于传统的氟硼二吡咯(BODIPY)荧光染料, 设计合成了一种过氧化氢(H2O2)激活型近红外光敏剂中位-N-(4-硼酸苄基)吡啶鎓盐取代的碘化双苯乙烯基氟硼二吡咯(FP-IBDP). FP-IBDP在乙腈中的吸收和发射波长均达到近红外区, 最大吸收和发射波长分别为681 nm和740 nm, 对应的荧光量子效率和单线态氧效率分别为0.01和0.09. 在被H2O2激活后, FP-IBDP转变为IBDP, 其在乙腈中的最大吸收和发射波长分别为661 nm和701 nm. 与FP-IBDP相比, IBDP的荧光量子效率和单线态氧效率大幅提升, 分别达到0.11和0.48. 细胞水平的荧光影像实验表明FP-IBDP对癌细胞内的H2O2具有灵敏的响应, 并能通过明显的荧光增强变化实现癌细胞与正常细胞的有效区分. 活性氧检测实验证明FP-IBDP能够被癌细胞内过表达的H2O2激活, 并能在660 nm光照射下在癌细胞内产生单线态氧. 噻唑蓝(MTT)比色法测试表明了FP-IBDP具有低的细胞暗毒性和好的生物相容性. 细胞光毒性测试及活/死细胞染色标记实验则表明FP-IBDP对癌细胞具有更高的光毒性, 而对正常细胞具有低的光损伤. 细胞划痕实验进一步表明FP-IBDP在光照下能够有效抑制癌细胞增殖. 此外, 荧光共定位及溶酶体完整性检测实验表明FP-IBDP主要作用于细胞溶酶体, 光照下产生的单线态氧通过破坏溶酶体导致溶酶体相关的细胞死亡. 上述结果为氟硼二吡咯光敏剂FP-IBDP实现近红外光激发下荧光成像指导的光动力学治疗奠定了基础.
吕鑫, 吴仪, 张勃然, 郭炜. 过氧化氢激活型近红外氟硼二吡咯光敏剂的设计、合成及光动力治疗研究[J]. 化学学报, 2023, 81(4): 359-370.
Xin Lv, Yi Wu, Boran Zhang, Wei Guo. Design, Synthesis and Photodynamic Therapy of a H2O2-Activatable Near Infrared Borondipyrromethene (BODIPY) Photosensitizer[J]. Acta Chimica Sinica, 2023, 81(4): 359-370.
[1] |
Li, X.; Lee, S.; Yoon, J. Chem. Soc. Rev. 2018, 47, 1174.
doi: 10.1039/C7CS00594F |
[2] |
Luby, B.; Walsh, C.; Zheng, G. Angew. Chem. Int. Ed. 2019, 58, 2558.
doi: 10.1002/anie.v58.9 |
[3] |
Pham, T.; Nguyen, V.; Choi, Y.; Lee, S.; Yoon, J. Chem. Rev. 2021, 121, 13454.
doi: 10.1021/acs.chemrev.1c00381 |
[4] |
Zhou, L.; Lv, F.; Liu, L.; Wang, S. Acc. Chem. Res. 2019, 52, 3211.
doi: 10.1021/acs.accounts.9b00427 |
[5] |
Yan, T.; Liu, Z.-H.; Song, X.-Y.; Zhang, S.-S. Acta Chim. Sinica 2020, 78, 657. (in Chinese)
doi: 10.6023/A20040132 |
(闫涛, 刘振华, 宋昕玥, 张书圣, 化学学报, 2020, 78, 657.)
doi: 10.6023/A20040132 |
|
[6] |
Bu, Y.; Zhu, X.; Wang, H.; Zhang, J.; Wang, L.; Yu, Z.; Tian, Y.; Zhou, H.; Xie, Y. Anal. Chem. 2021, 93, 12059.
doi: 10.1021/acs.analchem.1c02310 |
[7] |
Chen, D.; Wang, Z.; Dai, H.; Lv, X.-Y.; Ma, Q.; Yang, D.; Shao, J.; Xu, Z.; Dong, X. Small Methods 2020, 2000013.
|
[8] |
Chen, L.; Yang, Y.; Zhang, P.; Wang, S.; Xu, J. F.; Zhang, X. ACS Appl. Bio Mater. 2019, 2, 2920.
doi: 10.1021/acsabm.9b00284 |
[9] |
Feng, L.; Betzer, O.; Tao, D.; Sadan, T.; Popovtzer, R.; Liu, Z. CCS Chem. 2019, 1, 239.
|
[10] |
Triesscheijn, M.; Baas, P.; Schellens, J. M.; Stewart, F. A. Oncology 2006, 11, 1034.
|
[11] |
Gross, S.; Gilead, A.; Scherz, A.; Neeman, M.; Salomon, Y. Nat. Med. 2003, 9, 1327.
doi: 10.1038/nm940 |
[12] |
Master, A.; Livingston, M.; Sen, A. J. Control. Release 2013, 168, 88.
|
[13] |
Cao, H.; Wang, L.; Yang, Y.; Li, J.; Qi, Y.; Li, Y.; Wang, H.; Li, J.-B. Angew. Chem. Int. Ed. 2018, 57, 7759.
doi: 10.1002/anie.v57.26 |
[14] |
Wang, S.-B.; Han, K.; Lei, Q.; Zhu, J.-Y.; Zhang, X.-Z. ACS Nano 2015, 9, 10268.
doi: 10.1021/acsnano.5b04243 |
[15] |
Zhai, W.-H.; Zhang, Y.-K.; Liu, M.; Zhang, H.; Zhang, J.-P.; Li, C.-H. Angew. Chem. Int. Ed. 2019, 58, 16601.
doi: 10.1002/anie.v58.46 |
[16] |
Tian, J.; Ding, L.; Xu, H.; Shen, Z.; Ju, H.; Jia, L.; Bao, L.; Yu, J. J. Am. Chem. Soc. 2013, 135, 18850.
doi: 10.1021/ja408286k |
[17] |
Ling, D.; Park, W.; Park, S. j.; Lu, Y.; Kim, K.; Hackett, M.; Kim, B.; Yim, H.; Jeon, Y.; Na, K.; Hyeon, T. J. Am. Chem. Soc. 2014, 136, 5647.
doi: 10.1021/ja4108287 |
[18] |
Tian, J.; Ding, L.; Ju, H.; Yang, Y.; Li, X.; Shen, Z.; Zhu, Z.; Yu, J.; Yang, C. Angew. Chem. Int. Ed. 2014, 53, 9544.
doi: 10.1002/anie.201405490 |
[19] |
Zhang, Y.; Li, X.; Huang, L.; Kim, H.; An, J.; Lan, M.; Cao, Q.; Kim, J. Chem. Commun. 2020, 56, 10317.
doi: 10.1039/D0CC02045A |
[20] |
Xu, F.; Li, H.; Yao, Q.; Ge, H.; Fan, J.; Sun, W.; Wang, J.; Peng, X. Chem. Sci. 2019, 10, 10586.
doi: 10.1039/C9SC03355F |
[21] |
Guo, Z.; Park, S.; Yoon, J.; Shin, I. Chem. Soc. Rev. 2014, 43, 16.
doi: 10.1039/C3CS60271K |
[22] |
Chen, X.; Lee, D.; Yu, S.; Kim, G.; Lee, S.; Cho, Y.; Jeong, H.; Nam, K.; Yoon, J. Biomaterials 2017, 122, 130.
doi: 10.1016/j.biomaterials.2017.01.020 |
[23] |
Tian, R.; Sun, W.; Li, M.; Long, S.; Li, M.; Fan, J.; Guo, L.; Peng, X. Chem. Sci. 2019, 10, 10106.
doi: 10.1039/C9SC04034J |
[24] |
Awuah, S.; You, Y. RSC Adv. 2012, 2, 11169.
doi: 10.1039/c2ra21404k |
[25] |
Bessette, A.; Hanan, G. Chem. Soc. Rev. 2014, 43, 3342.
doi: 10.1039/c3cs60411j pmid: 24577078 |
[26] |
Liu, B.-D.; Wang, C.-J.; Qian, Y. Acta Chim. Sinica 2022, 80, 1071. (in Chinese)
doi: 10.6023/A22040141 |
(刘巴蒂, 王承俊, 钱鹰, 化学学报, 2022, 80, 1071.)
doi: 10.6023/A22040141 |
|
[27] |
Yogo, T.; Urano, Y.; Ishitsuka, Y.; Maniwa F.; Nagano, T. J. Am. Chem. Soc. 2005, 127, 12162.
doi: 10.1021/ja0528533 |
[28] |
Atilgan, S.; Ekmekci, Z.; Dogan, A. L.; Guc, D.; Akkaya, E. Chem. Commun. 2006, 4398.
|
[29] |
Awuah, S. G.; Polreis, J.; Biradar, V.; You, Y. Org. Lett. 2011, 13, 3884.
doi: 10.1021/ol2014076 |
[30] |
Batat, P.; Cantuel, M.; Jonusauskas, G.; Scarpantonio, L.; Palma, A.; O’Shea, D.; McClenaghan, N. J. Phys. Chem. A 2011, 115, 14034.
doi: 10.1021/jp2077775 |
[31] |
Nguyen, V.; Yim, Y.; Kim, S.; Ryu, B.; Swamy, K.; Kim, G.; Kwon, N.; Kim, C.; Park, S.; Yoon, J. Angew. Chem. Int. Ed. 2020, 59, 8957.
doi: 10.1002/anie.v59.23 |
[32] |
Dong, Y.; Dick, B.; Zhao, J. Z. Org. Lett. 2020, 22, 5535.
doi: 10.1021/acs.orglett.0c01903 pmid: 32643941 |
[33] |
Raza, M.; Gautam, S.; Howlader, P.; Bhattacharyya, A.; Kondaiah, P.; Chakravarty, A. Inorg. Chem. 2018, 57, 14374.
doi: 10.1021/acs.inorgchem.8b02546 |
[34] |
Li, M.; Tian, R.; Fan, J.; Du, J.; Long, S.; Peng, X. Dyes and Pigments 2017, 147, 99.
doi: 10.1016/j.dyepig.2017.07.048 |
[35] |
Liu, Y.; Xu, C.; Teng, L.; Liu, H.; Ren, T.; Xu, S.; Lou, X.; Guo, H.; Yuan, L.; Zhang, X. Chem. Commun. 2020, 56, 1956.
doi: 10.1039/C9CC09790B |
[36] |
Teng, K.; Niu, L.; Kang, Y.; Yang, Q. Chem. Sci. 2020, 11, 9703.
doi: 10.1039/D0SC01122C |
[37] |
Lv, X.; Han, T.; Wu, Y.; Zhang, B.; Guo, W. Chem. Commun. 2021, 57, 9744.
doi: 10.1039/D1CC03360C |
[38] |
Yuan, B.; Wang, H.; Xu, J.; Zhang, X. ACS Appl. Mater. Interfaces 2020, 12, 26982.
doi: 10.1021/acsami.0c07471 |
[39] |
Zeng, Q.; Zhang, R.; Zhang, T.; Xing, D. Biomaterials 2019, 207, 39.
doi: S0142-9612(19)30203-0 pmid: 30953845 |
[40] |
Liu, H.; Hu, X.; Li, K.; Liu, Y.; Rong, Q.; Zhu, L.; Yuan, L.; Qu, F.; Zhang, X.; Tan, W. Chem. Sci. 2017, 8, 7689.
doi: 10.1039/C7SC03454G |
[41] |
Chen, H.; Tian, J.; He, W.; Guo, Z. J. Am. Chem. Soc. 2015, 137, 1539.
doi: 10.1021/ja511420n |
[42] |
Abouelmagd, S. A.; Hyun, H.; Yeo, Y. Expert Opin. Drug Del. 2014, 11, 1601.
doi: 10.1517/17425247.2014.930434 |
[43] |
Hamblin, M. R.; Miller, J. L.; Rizvi, I.; Ortel, B.; Maytin, E. V.; Hasan, T. Cancer Res. 2001, 61, 7155.
pmid: 11585749 |
[44] |
Sahoo, S. K.; Sawa, T.; Fang, J.; Tanaka, S.; Miyamoto, Y.; Akaike, T.; Maeda, H. Bioconjugate Chem. 2002, 13, 1031.
pmid: 12236785 |
[45] |
Rapozzi, V.; Zacchigna, M.; Biffi, S.; Garrovo, C.; Cateni, F.; Stebel, M.; Zorzet, S.; Bonora, G. M.; Drioli, S.; Xodo, L. Cancer Biol. Ther. 2010, 10, 471.
doi: 10.4161/cbt.10.5.12536 |
[46] |
Narayanaswamy, N.; Narra, S.; Nair, R.; Saini, D.; Kondaiah, P.; Govindaraju, T. Chem. Sci. 2016, 7, 2832.
doi: 10.1039/c5sc03488d pmid: 30090277 |
[47] |
Reja, S.; Gupta, M.; Gupta, N.; Bhalla, V.; Ohri, P.; Kaur, G.; Kumar, M. Chem. Commun. 2017, 53, 3701.
doi: 10.1039/C6CC09127J |
[48] |
Guicciardi, M.; Leist, M.; Gores, G. Oncogene 2004, 23, 2881.
pmid: 15077151 |
[49] |
Kroemer, G.; Jaattela, M. Nat. Rev. Cancer 2005, 5, 886.
doi: 10.1038/nrc1738 pmid: 16239905 |
[50] |
Chen, H.; Xiao, L.; Anraku, Y.; Mi, P.; Liu, X.; Cabral, H.; Inoue, A.; Nomoto, T.; Kishimura, A.; Nishiyama, N.; Kataoka, K. J. Am. Chem. Soc. 2014, 136, 157.
doi: 10.1021/ja406992w |
[1] | 车飞达, 赵晓茗, 张馨, 丁琪, 王昕, 李平, 唐波. 抑郁症相关活性分子的荧光成像★[J]. 化学学报, 2023, 81(9): 1255-1264. |
[2] | 王海朋, 蔡文生, 邵学广. 抗冻剂抗冻机制的近红外光谱与分子模拟研究★[J]. 化学学报, 2023, 81(9): 1167-1174. |
[3] | 武虹乐, 郭锐, 迟涵文, 唐永和, 宋思睿, 葛恩香, 林伟英. 喹啉基粘度荧光探针的合成及其检测应用[J]. 化学学报, 2023, 81(8): 905-911. |
[4] | 张媛, 郑贝宁, 符美春, 冯守华. 尖晶石氧化物在肿瘤诊疗应用领域研究进展★[J]. 化学学报, 2023, 81(8): 949-954. |
[5] | 黄艳琴, 栗丽君, 杨书培, 张瑞, 刘兴奋, 范曲立, 黄维. HA-AuNPs/FDF用于透明质酸酶的高灵敏检测、肿瘤靶向细胞荧光成像和光疗[J]. 化学学报, 2023, 81(12): 1687-1694. |
[6] | 闫英红, 梁平兆, 邹杨, 袁林, 彭孝军, 樊江莉, 张晓兵. 有机光敏剂结构与性能调控及其光诊疗应用★[J]. 化学学报, 2023, 81(11): 1642-1662. |
[7] | 孙丽, 王亚静, 李涛, 郭英姝, 张书圣. 金纳米笼探针用于线粒体成像和光热损伤细胞★[J]. 化学学报, 2023, 81(10): 1301-1310. |
[8] | 宋思睿, 唐永和, 孙良广, 郭锐, 姜冠帆, 林伟英. 基于香豆素荧光团的新型极性检测荧光探针的开发及其成像应用[J]. 化学学报, 2022, 80(9): 1217-1222. |
[9] | 刘巴蒂, 王承俊, 钱鹰. 噻吩基氟硼二吡咯近红外光敏染料的合成、双光子荧光成像及光动力治疗研究[J]. 化学学报, 2022, 80(8): 1071-1083. |
[10] | 刘若湄, 冯艳辉, 李卓, 卢珊, 关天用, 李幸俊, 刘䶮, 陈卓, 陈学元. 基于cypate光裂解的新型近红外光响应稀土上转换纳米载药系统※[J]. 化学学报, 2022, 80(4): 423-427. |
[11] | 王其, 夏辉, 熊炎威, 张新敏, 蔡杰, 陈冲, 高逸聪, 陆峰, 范曲立. 调控供电子策略简易制备近红外二区有机小分子光学诊疗试剂[J]. 化学学报, 2022, 80(11): 1485-1493. |
[12] | 潘立祥, 黄艳琴, 盛况, 张瑞, 范曲立, 黄维. 透明质酸纳米材料在荧光/光声成像和光疗中的应用[J]. 化学学报, 2021, 79(9): 1097-1106. |
[13] | 黄菊, 李贞, 刘志洪. 近红外光激发功能化上转换纳米颗粒用于解聚Aβ聚集体[J]. 化学学报, 2021, 79(8): 1049-1057. |
[14] | 魏廷文, 江龙, 陈亚辉, 陈小强. 光笼分子与材料研究进展[J]. 化学学报, 2021, 79(1): 58-70. |
[15] | 任江波, 王蕾, 郭锐, 唐永和, 周红梅, 林伟英. 一种基于萘酰亚胺的检测细胞内pH值的荧光探针及其生物成像应用[J]. 化学学报, 2021, 79(1): 87-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||