化学学报 ›› 2023, Vol. 81 ›› Issue (8): 884-890.DOI: 10.6023/A23040132 上一篇 下一篇
所属专题: 庆祝《化学学报》创刊90周年合辑
研究论文
投稿日期:
2023-04-13
发布日期:
2023-09-14
作者简介:
基金资助:
Jianchuan Liu, Cuiyan Li, Yaozu Liu, Yujie Wang(), Qianrong Fang()
Received:
2023-04-13
Published:
2023-09-14
Contact:
*E-mail: wyujie@jlu.edu.cn; qrfang@jlu.edu.cn
About author:
Supported by:
文章分享
化石燃料的过度消耗和环境污染已成为全球面临的主要问题, 如何合理开发利用新能源成为我国能源战略中的主要目标. 新型能量转换技术是促进新能源发展的关键. 目前, 以金属-空气电池、燃料电池等为主导的新型清洁电化学能量转换技术在转换效率、经济性等方面均取得了重大突破, 极具产业化应用前景. 开发高效、稳定、低成本的电化学催化剂是促进清洁能转换装置发展的关键. 在此, 报道了一种基于联咔唑构筑单元合成的高稳定sp2键型的共价有机框架材料(JUC-557)用于燃料电池阴极氧还原反应(ORR). 该材料具有高比表面积、高稳定性等优点, 同时也表现出高效的ORR催化性能和组装锌-空电池的应用潜力. 此外, 该材料相比于贵金属催化剂, 也具有低成本、低污染、结构明确、原子和结构精度可控等优势. 本研究为构建异质原子高效非金属电催化剂提供了一种新思路.
刘建川, 李翠艳, 刘耀祖, 王钰杰, 方千荣. 高稳定二维联咔唑sp2碳共轭共价有机框架材料用于高效电催化氧还原★[J]. 化学学报, 2023, 81(8): 884-890.
Jianchuan Liu, Cuiyan Li, Yaozu Liu, Yujie Wang, Qianrong Fang. Highly-Stable Two-Dimensional Bicarbazole-based sp2-Carbon-conjugated Covalent Organic Framework for Efficient Electrocatalytic Oxygen Reduction★[J]. Acta Chimica Sinica, 2023, 81(8): 884-890.
[1] |
Zou X.; Zhang Y. Chem. Soc. Rev. 2015, 44, 5148.
doi: 10.1039/C4CS00448E |
[2] |
Bu R.; Lu Y.; Zhang B. Chem. Res. Chin. Univ. 2022, 38, 1151.
doi: 10.1007/s40242-022-2219-2 |
[3] |
Yang C.; Yang Z.-D.; Dong H.; Sun N.; Lu Y.; Zhang F.-M.; Zhang G. ACS Energy Lett. 2019, 4, 2251.
doi: 10.1021/acsenergylett.9b01691 |
[4] |
Tao S.; Jiang D. CCS Chem. 2021, 3, 2003.
doi: 10.31635/ccschem.020.202000491 |
[5] |
Debe M. K. Nature 2012, 486, 43.
doi: 10.1038/nature11115 |
[6] |
Zhang J.; Zhao Y.; Chen C.; Huang Y.-C.; Dong C.-L.; Chen C.-J.; Liu R.-S.; Wang C.; Yan K.; Li Y. J. Am. Chem. Soc. 2019, 141, 20118.
doi: 10.1021/jacs.9b09352 |
[7] |
Lee Y.; Suntivich J.; May K. J.; Perry E. E.; Shao-Horn Y. J. Phys. Chem. Lett. 2012, 3, 399.
|
[8] |
Nørskov J. K.; Rossmeisl J.; Logadottir A.; Lindqvist L.; Kitchin J. R.; Bligaard T.; Jonsson H. J. Phys. Chem. B 2004, 108, 17886.
doi: 10.1021/jp047349j |
[9] |
Miles M. Electrochim. Acta 1978, 23, 521.
doi: 10.1016/0013-4686(78)85030-0 |
[10] |
Gong K.; Du F.; Xia Z.; Durstock M.; Dai L. Science 2009, 323, 760.
doi: 10.1126/science.1168049 |
[11] |
Yang Z.; Xiang M.; Zhu Y.; Hui J.; Jiang Y.; Dong S.; Yu C.; Ou J.; Qin H. Chem. Eng. J. 2021, 426, 131347.
doi: 10.1016/j.cej.2021.131347 |
[12] |
Wang J.; Cui W.; Liu Q.; Xing Z.; Asiri A. M.; Sun X. Adv. Mater. 2016, 28, 215.
doi: 10.1002/adma.201502696 |
[13] |
Shao M.; Chang Q.; Dodelet J.-P.; Chenitz R. Chem. Rev. 2016, 116, 3594.
doi: 10.1021/acs.chemrev.5b00462 |
[14] |
Cote A. P.; Benin A. I.; Ockwig N. W.; O'keeffe M.; Matzger A. J.; Yaghi O. M. Science 2005, 310, 1166.
doi: 10.1126/science.1120411 |
[15] |
Feng X.; Liu L.; Honsho Y.; Saeki A.; Seki S.; Irle S.; Dong Y.; Nagai A.; Jiang D. Angew. Chem., Int. Ed. 2012, 51, 2618.
doi: 10.1002/anie.201106203 |
[16] |
Zhang Z.; Jiang F.; Wu K.; Shen P. Acta Chim. Sinica 2022, 80, 56. (in Chinese)
doi: 10.6023/A21090440 |
( 张竹涵, 蒋峰景, 吴珂科, 申鹏, 化学学报, 2022, 80, 56.)
|
|
[17] |
Zhuang R.; Xu X.; Qu C.; Xu S.; Yu T.; Wang H.; Xu F. Acta Chim. Sinica 2021, 79, 378. (in Chinese)
doi: 10.6023/A20100462 |
( 庄容, 许潇洒, 曲昌镇, 徐顺奇, 于涛, 王洪强, 徐飞, 化学学报, 2021, 79, 378.)
|
|
[18] |
Li J. L.; Xiao Y.; Shui F.; Yi M.; Zhang Z. Y.; Liu X. L.; Zhang L. Y.; You Z. F.; Yang R. F.; Yang S. Q.; Li B. Y.; Bu X. H. Chin. J. Chem. 2022, 40, 2445.
doi: 10.1002/cjoc.v40.20 |
[19] |
Yu C.; Li H.; Wang Y.; Suo J.; Guan X.; Wang R.; Valtchev V.; Yan Y.; Qiu S.; Fang Q. Angew. Chem., Int. Ed. 2022, 61, e202117101.
doi: 10.1002/anie.v61.13 |
[20] |
Song J.; Wang Z.; Liu Y.; Tuo C.; Wang Y.; Fang Q.; Qiu S.; Chem. Res. Chin. Univ. 2022, 38, 834.
doi: 10.1007/s40242-022-2060-7 |
[21] |
Fang Q.; Wang J.; Gu S.; Kaspar R. B.; Zhuang Z.; Zheng J.; Guo H.; Qiu S.; Yan Y. J. Am. Chem. Soc. 2015, 137, 8352.
doi: 10.1021/jacs.5b04147 |
[22] |
Wang T.; Zhao L.; Wang K.; Bai Y.; Feng F. Acta Chim. Sinica 2021, 79, 600. (in Chinese)
doi: 10.6023/A20120578 |
( 王涛, 赵璐, 王科伟, 白云峰, 冯锋, 化学学报, 2021, 79, 600.)
|
|
[23] |
Liao L.; Zhang Z. R.; Guan X. Y.; Li H.; Liu Y. Z.; Zhang M. H.; Tang B.; Valtchev V.; Yan Y. S.; Qiu S. L.; Yao X. D.; Fang Q. R. Chin. J. Chem. 2022, 40, 2081.
doi: 10.1002/cjoc.v40.17 |
[24] |
Li Z.; Zhang Y.; Xia H.; Mu Y.; Liu X. Chem. Commun. 2016, 52, 6613.
doi: 10.1039/C6CC01476C |
[25] |
Xian W.; Zhang P.; Zhu C.; Zuo X.; Ma S.; Sun Q. CCS Chem. 2021, 3, 2464.
|
[26] |
Haotian R.; Zhu Z.; Cai Y.; Wang W.; Wang Z.; Liang A.; Luo A. Acta Chim. Sinica 2022, 80, 1524. (in Chinese)
doi: 10.6023/A22070339 |
( 浩天瑞霖, 朱子煜, 蔡艳慧, 王微, 王祯, 梁阿新, 罗爱芹, 化学学报, 2022, 80, 1524.)
|
|
[27] |
Chandra S.; Kundu T.; Kandambeth S.; Babarao R.; Marathe Y.; Kunjir S. M.; Banerjee R. J. Am. Chem. Soc. 2014, 136, 6570.
doi: 10.1021/ja502212v |
[28] |
Shao M. C.; Liu Y. Q.; Guo Y. L. Chin. J. Chem. 2023, 41, 1260.
doi: 10.1002/cjoc.v41.10 |
[29] |
Li D.; Li C.; Zhang L.; Li H.; Zhu L.; Yang D.; Fang Q.; Qiu S.; Yao X. J. Am. Chem. Soc. 2020, 142, 8104.
doi: 10.1021/jacs.0c02225 |
[30] |
Chang S.; Li C.; Li H.; Zhu L.; Fang Q. Chem. Res. Chin. Univ. 2022, 38, 396.
doi: 10.1007/s40242-022-1465-7 |
[31] |
Yu X.; Huang W.; Li Y. Acta Chim. Sinica 2022, 80, 1494. (in Chinese)
doi: 10.6023/A22070303 |
( 于潇涵, 黄伟, 李彦光, 化学学报, 2022, 80, 1494.)
|
|
[32] |
Chen Q.; Kuang Q.; Xie Z. Acta Chim. Sinica 2021, 79, 10. (in Chinese)
doi: 10.6023/A20080384 |
( 陈钱, 匡勤, 谢兆雄, 化学学报, 2021, 79, 10.)
|
|
[33] |
Chen Y.; Chen Q.; Zhang Z. Chin. J. Org. Chem. 2021, 41, 3826. (in Chinese)
doi: 10.6023/cjoc202107030 |
( 陈育萱, 陈奇, 张占辉, 有机化学, 2021, 41, 3826.)
|
|
[34] |
Dong M.; Li W.; Zhou J.; You S. Q.; Sun C. Y.; Yao X. H.; Qin C.; Wang X. L.; Su Z. M. Chin. J. Chem. 2022, 40, 2678.
doi: 10.1002/cjoc.v40.22 |
[35] |
Ma L.; Wang S.; Feng X.; Wang B. Chin. Chem. Lett. 2016, 27, 1383.
doi: 10.1016/j.cclet.2016.06.046 |
[36] |
Tang X.; Chen Z.; Xu Q.; Su Y.; Xu H.; Horike S.; Zhang H.; Li Y.; Gu C. CCS Chem. 2022, 4, 2842.
doi: 10.31635/ccschem.021.202101198 |
[37] |
Nagai A.; Guo Z.; Feng X.; Jin S.; Chen X.; Ding X.; Jiang D. Nat. Commun. 2011, 2, 1.
|
[38] |
Xiang Z.; Xue Y.; Cao D.; Huang L.; Chen J. F.; Dai L. Angew. Chem., Int. Ed. 2014, 53, 2433.
doi: 10.1002/anie.201308896 |
[39] |
Bunck D. N.; Dichtel W. R. Angew. Chem., Int. Ed. 2012, 51, 1885.
doi: 10.1002/anie.v51.8 |
[40] |
Yu X.; Ma Y.; Li C.; Guan X.; Fang Q.; Qiu S. Chem. Res. Chin. Univ. 2022, 38, 167.
doi: 10.1007/s40242-021-1374-1 |
[41] |
Liu Y.; Ren J.; Wang Y.; Zhu X.; Guan X.; Wang Z.; Zhou Y.; Zhu L.; Qiu S.; Xiao S.; Fang Q. CCS Chem. 2023, DOI: 10.31635/ccschem.022.202202352.
doi: 10.31635/ccschem.022.202202352 |
[42] |
Materials Studio ver.7.0, Diego, S. Accelrys Inc, 2013.
|
[43] |
El-Mahdy A. F.; Lai M.-Y.; Kuo S.-W. J. Mater. Chem. C 2020, 8, 9520.
doi: 10.1039/D0TC01872D |
[1] | 李珊, 路俊欣, 刘杰, 蒋绿齐, 易文斌. 氟烷基亚磺酸钠盐电化学合成α-氟烷基酮[J]. 化学学报, 2024, 82(2): 110-114. |
[2] | 林航青, 马若茹, 江怡蓝, 许木榕, 林洋彭, 杜克钊. 用于卤素捕获的材料研究进展[J]. 化学学报, 2024, 82(1): 62-74. |
[3] | 魏颖, 王家成, 李玥, 汪涛, 马述威, 解令海. 碳碳键链接的二维共价有机框架研究进展[J]. 化学学报, 2024, 82(1): 75-102. |
[4] | 杨蓉婕, 周璘, 苏彬. 基于共价有机框架修饰电极的维生素A和C的选择性检测★[J]. 化学学报, 2023, 81(8): 920-927. |
[5] | 何明慧, 叶子秋, 林桂庆, 尹晟, 黄心翊, 周旭, 尹颖, 桂波, 汪成. 卟啉基共价有机框架的光催化研究进展★[J]. 化学学报, 2023, 81(7): 784-792. |
[6] | 陈俊畅, 张明星, 王殳凹. 晶态多孔材料合成方法的研究进展[J]. 化学学报, 2023, 81(2): 146-157. |
[7] | 杨镇鸿, 干晓娟, 王书哲, 段君元, 翟天佑, 刘友文. 金属性Ni3N纳米粒子的制备与乙二醇电氧化性能★[J]. 化学学报, 2023, 81(11): 1471-1477. |
[8] | 闫绍兵, 焦龙, 何传新, 江海龙. ZIF-67/石墨烯复合物衍生的氮掺杂碳限域Co纳米颗粒用于高效电催化氧还原[J]. 化学学报, 2022, 80(8): 1084-1090. |
[9] | 王振华, 马聪, 方萍, 徐海超, 梅天胜. 有机电化学合成的研究进展[J]. 化学学报, 2022, 80(8): 1115-1134. |
[10] | 何家伟, 焦柳, 程雪怡, 陈光海, 吴强, 王喜章, 杨立军, 胡征. 金属有机框架衍生的空心碳纳米笼的结构调控与锂硫电池性能研究[J]. 化学学报, 2022, 80(7): 896-902. |
[11] | 蒋银龙, 李国超, 陈青松, 徐忠宁, 林姗姗, 郭国聪. 富晶格位错的多孔铋纳米花高效电还原二氧化碳制甲酸盐※[J]. 化学学报, 2022, 80(6): 703-707. |
[12] | 王丹, 封波, 张晓昕, 刘亚楠, 裴燕, 乔明华, 宗保宁. 基于热解ZIF-8的氮掺杂碳电化学氧还原合成过氧化氢催化剂[J]. 化学学报, 2022, 80(6): 772-780. |
[13] | 应霞薇, 浮建军, 曾敏, 刘文, 张天宇, 沈培康, 张信义. 基于BiOCl-Fe2O3@TiO2介孔复合材料的光电化学合成氨性能研究[J]. 化学学报, 2022, 80(4): 503-509. |
[14] | 李泽洋, 杨宇森, 卫敏. 二氧化碳还原电催化剂的结构设计及性能研究进展[J]. 化学学报, 2022, 80(2): 199-213. |
[15] | 张蒙茜, 冯霄. 共轭微孔聚合物膜的制备策略及其分离应用[J]. 化学学报, 2022, 80(2): 168-179. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||