化学学报 ›› 2023, Vol. 81 ›› Issue (10): 1357-1370.DOI: 10.6023/A23050210 上一篇    下一篇

研究论文

碱(土)金属/双层α-硼烯纳米复合体的结构和功函性质的理论研究

郑冰*(), 王喆, 何静, 张姣, 戚文博, 张梦圆, 于海涛*()   

  1. 黑龙江大学化学化工与材料学院 功能无机材料化学教育部重点实验室 哈尔滨 150080
  • 投稿日期:2023-05-06 发布日期:2023-06-27
  • 作者简介:
    作者对文章贡献一致
  • 基金资助:
    国家自然科学基金(21601054); 中国博士后科学基金(2020M670935); 黑龙江省省属高校基本科研业务费科研项目(2021-KYYWF0009); 国家大学生创新创业训练计划项目(202210212029); 国家大学生创新创业训练计划项目(2022041); 国家大学生创新创业训练计划项目(202310212033)

Structure and Work Function of Alkaline (Earth) Metal-Bilayer α-Borophene Nanocomposite: A Theoretical Study

Bing Zheng(), Zhe Wang, Jing He, Jiao Zhang, Wenbo Qi, Mengyuan Zhang, Haitao Yu()   

  1. Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080
  • Received:2023-05-06 Published:2023-06-27
  • Contact: *E-mail: zhengbing@hlju.edu.cn (B. Zheng); yuhaitao@hlju.edu.cn (H. T. Yu)
  • About author:
    The authors contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(21601054); Project funded by China Postdoctoral Science Foundation(2020M670935); Fundamental Research Funds for the Provincial Universities(2021-KYYWF0009); Training Program of Innovation and Entrepreneurship for Undergraduates of China(202210212029); Training Program of Innovation and Entrepreneurship for Undergraduates of China(2022041); Training Program of Innovation and Entrepreneurship for Undergraduates of China(202310212033)

功函可调硼烯基电极材料可有效提升载流子的迁移效率, 因此对于最大化器件的能量转换效率及性能至关重要. 基于第一性原理密度泛函理论, 研究了碱(土)金属吸附双层α-硼烯(M/DBBP; M=Li~Cs; Be~Ba)纳米复合材料的几何、稳定性、电子结构和功函随M电离能(IP)的变化规律. 结果表明, 所研究的10个M/DBBP体系均是热、动力学稳定的. M/DBBP体系的M—B键长、结合能、吸附原子与DBBP之间的电子转移和功函均与吸附原子IP呈(近)线性关系. 由于Li和Be的尺寸非常小, 其大幅增加的M—B成键区域导致Li/DBBP和Be/DBBP的结合能偏离了与其吸附原子IP之间的线性关系. 由于Ca/DBBP中层间区域形成了独特的多中心键, 使得Ca/DBBP的层间相互作用强度显著高于其余9个体系. M/DBBP保持了金属性, 碱(土)金属原子与DBBP之间的成键方式均为离子键. 此外, 吸附原子向基体转移的电荷数和诱导偶极矩均随吸附原子IP的减小而增加, 是碱(土)金属/DBBP功函降低的主要原因. 本研究揭示了M/DBBP复合体的几何、稳定性、电子结构和功函的变化规律, 为深入认识上述科学问题, 以及实验上设计功函可调的硼烯基电极材料提供理论依据.

关键词: 双层硼烯, 功函, 吸附, 电子结构, 结合能

Work function-adjustable borophene-based electrode materials are of significant importance for achieving the maximum energy conversion efficiency of electronic devices owing to their vital role in efficient transferring of carriers. Accordingly, understanding the regularity in the gradation of the work function for adatom-borophene nanocomposites with diverse adatoms will facilitate the design of such materials. Herein, the structural stabilities, electronic structures, and work functions of M-decorated experimentally available bilayer α-borophene (M/DBBP; M=Li~Cs; Be~Ba) are investigated systematically. The results obtained indicate that M/DBBP are all thermodynamically and kinetically stable. Moreover, M—B bond length, binding energy (Eb), electron transfer between M and DBBP, and work function (ϕ) are linearly dependent on the ionization potential (IP) in the same adatom family for these investigated systems. Furthermore, we report the two exceptional binding energies of Li/DBBP and Be/DBBP, which deviate from abovementioned IP dependence, owing to their extremely small adatoms and the resulting significantly enhanced effective M—B bonding areas. Impressively, the forming interlayer multi-centered B—B bonds lead to a significantly enhanced interlayer interaction of Ca/DBBP relative to other nine M/DBBP systems. In addition to interpreting that the metallic M/DBBP possesses ionic sp-p and dsp-p bonds for M1/DBBP (M1=Li, Na, Be, Mg, Sr, and Ba) and M2/DBBP (M2=K, Rb, Cs, and Ca), respectively, in particular, we confirm that the positive IP dependence of ϕ for alkali (earth) metal/DBBP originates from the synergistic effect of charge rearrangement and the increasing induced dipole moment. Our predictions not only provide guidance to the experimental efforts towards the realization of work function-adjustable borophene-based electrodes, which can be utilized as cathode materials in electronic devices, but also present a rational understanding of the bonding rules between varying alkali (earth) metal adatoms and bilayer α-borophene.

Key words: bilayer borophene, work function, adsorption, electronic structure, binding energy