化学学报 ›› 2023, Vol. 81 ›› Issue (12): 1701-1707.DOI: 10.6023/A23080374 上一篇 下一篇
研究论文
刘健a, 欧金花a,*(), 李泽平a, 蒋婧怡a, 梁荣涛a, 张文杰a, 刘开建a,*(), 韩瑜b,c,*()
投稿日期:
2023-08-10
发布日期:
2023-12-01
基金资助:
Jian Liua, Jinhua Oua(), Zeping Lia, jingyi Jianga, Rongtao Lianga, Wenjie Zhanga, kaijian Liua(), Yu Hanb,c()
Received:
2023-08-10
Published:
2023-12-01
Contact:
*E-mail: Supported by:
文章分享
芳香胺及其衍生物是药物、染料、除草剂等的重要原料或关键中间体, 开发高效、低成本、高选择性的硝基芳烃还原催化剂具有重要的现实意义. 以常见的沸石类咪唑骨架材料为模板, 原位热解制备了一种Co单原子催化剂(Co-N-C), 并以乙醇作溶剂, 水合肼作氢源, 实现了多种硝基芳烃的高效氢化还原. 该Co-N-C材料制备简单, 催化活性优异, 所催化的硝基芳烃还原体系反应条件温和, 官能团兼容性优异. 天然产物应用实验、克级扩大实验、循环实验和抗浸出实验证实了Co-N-C的高效性和还原体系的实用性. 另外, 通过反应过程检测, 提出了Co-N-C催化硝基芳烃直接还原和缩合还原的两种反应机理.
刘健, 欧金花, 李泽平, 蒋婧怡, 梁荣涛, 张文杰, 刘开建, 韩瑜. 金属-有机骨架衍生的Co单原子高效催化硝基芳烃氢化还原[J]. 化学学报, 2023, 81(12): 1701-1707.
Jian Liu, Jinhua Ou, Zeping Li, jingyi Jiang, Rongtao Liang, Wenjie Zhang, kaijian Liu, Yu Han. Efficient Catalytic Hydrogenation of Nitroaromatic Using Cobalt Single-atom Derived from Metal-organic Framework[J]. Acta Chimica Sinica, 2023, 81(12): 1701-1707.
Entry | Cat. | Solvent | Time/h | Con./% | Yieldb/% |
---|---|---|---|---|---|
1 | ZIF-8 | EtOH | 5 | 9 | 2 |
2 | ZIF-67 | EtOH | 5 | 48 | 9 |
3 | Zn-Co MOF | EtOH | 5 | 50 | 11 |
4 | Co-N-C-900 | EtOH | 5 | 100 | 61 |
5 | Co-N-C-1000 | EtOH | 5 | 100 | 72 |
6 | Co-N-C-1100 | EtOH | 5 | 100 | 65 |
7 | N-C-1000 | EtOH | 5 | N.R. | N.R. |
8 | Co@N-C-1000 | EtOH | 5 | 39 | 25 |
9 | Co-N-C-1000 | DMSO | 5 | 10 | 6 |
10 | Co-N-C-1000 | DMF | 5 | 8 | 4 |
11 | Co-N-C-1000 | MeCN | 5 | 32 | 27 |
12 | Co-N-C-1000 | THF | 5 | 65 | 60 |
13 | Co-N-C-1000 | NMP | 5 | 40 | 29 |
14 | Co-N-C-1000 | DCE | 5 | 8 | 2 |
15 | Co-N-C-1000 | EtOH | 8 | 100 | 89 |
16 | Co-N-C-1000 | EtOH | 10 | 100 | 100 |
17c | Co-N-C-1000 | EtOH | 10 | 94 | 59 |
18d | Co-N-C-1000 | EtOH | 10 | 90 | 68 |
19e | Co-N-C-1000 | EtOH | 10 | 95 | 37 |
20f | Co-N-C-1000 | EtOH | 10 | 100 | 70 |
21g | Co-N-C-1000 | EtOH | 10 | 100 | 100 |
22h | Co-N-C-1000 | EtOH | 4 | 100 | 100 |
Entry | Cat. | Solvent | Time/h | Con./% | Yieldb/% |
---|---|---|---|---|---|
1 | ZIF-8 | EtOH | 5 | 9 | 2 |
2 | ZIF-67 | EtOH | 5 | 48 | 9 |
3 | Zn-Co MOF | EtOH | 5 | 50 | 11 |
4 | Co-N-C-900 | EtOH | 5 | 100 | 61 |
5 | Co-N-C-1000 | EtOH | 5 | 100 | 72 |
6 | Co-N-C-1100 | EtOH | 5 | 100 | 65 |
7 | N-C-1000 | EtOH | 5 | N.R. | N.R. |
8 | Co@N-C-1000 | EtOH | 5 | 39 | 25 |
9 | Co-N-C-1000 | DMSO | 5 | 10 | 6 |
10 | Co-N-C-1000 | DMF | 5 | 8 | 4 |
11 | Co-N-C-1000 | MeCN | 5 | 32 | 27 |
12 | Co-N-C-1000 | THF | 5 | 65 | 60 |
13 | Co-N-C-1000 | NMP | 5 | 40 | 29 |
14 | Co-N-C-1000 | DCE | 5 | 8 | 2 |
15 | Co-N-C-1000 | EtOH | 8 | 100 | 89 |
16 | Co-N-C-1000 | EtOH | 10 | 100 | 100 |
17c | Co-N-C-1000 | EtOH | 10 | 94 | 59 |
18d | Co-N-C-1000 | EtOH | 10 | 90 | 68 |
19e | Co-N-C-1000 | EtOH | 10 | 95 | 37 |
20f | Co-N-C-1000 | EtOH | 10 | 100 | 70 |
21g | Co-N-C-1000 | EtOH | 10 | 100 | 100 |
22h | Co-N-C-1000 | EtOH | 4 | 100 | 100 |
[1] |
Yan, Z.; Xie, H.-P.; Shen, H.-Q.; Zhou, Y.-G. Org. Lett. 2018, 20, 1094.
doi: 10.1021/acs.orglett.7b04060 |
[2] |
Yang, H.; Wang, L.; Xu, S.; Hui, X.; Cao, Y.; He, P.; Li, Y.; Li, H. Chem. Eng. J. 2022, 431, 133863.
|
[3] |
Romero, A. H. ChemistrySelect 2020, 5, 13054.
doi: 10.1002/slct.v5.42 |
[4] |
Lakshminarayana, B.; Selvaraj, M.; Satyanarayana, G.; Subrahmanyam, C. Catal. Rev. 2022, 10.1080/01614940.2022.2057045.
|
[5] |
Junge, K.; Wendt, B.; Shaikh, N.; Beller, M. Chem. Commun. 2010, 46, 1769.
doi: 10.1039/b924228g |
[6] |
Long, J.; Zhou, Y.; Li, Y. Chem. Commun. 2015, 51, 2331.
doi: 10.1039/C4CC08946D |
[7] |
Shalom, M.; Molinari, V.; Esposito, D.; Clavel, G.; Ressnig, D.; Giordano, C.; Antonietti, M. Adv. Mater. 2014, 26, 1272.
doi: 10.1002/adma.v26.8 |
[8] |
Jin, H.; Li, P.; Cui, P.; Shi, J.; Zhou, W.; Yu, X.; Song, W.; Cao, C. Nat. Commun. 2022, 13, 723.
doi: 10.1038/s41467-022-28367-9 |
[9] |
Chugh, V.; Chatterjee, B.; Chang, W. C.; Cramer, H. H.; Hindemith, C.; Randel, H.; Weyhermüller, T.; Farès, C.; Werlé, C. Angew. Chem. Int. Ed. 2022, 61, e202205515.
|
[10] |
Sarki, N.; Kumar, R.; Singh, B.; Ray, A.; Naik, G.; Natte, K.; Narani, A. ACS Omega 2022, 7, 19804.
doi: 10.1021/acsomega.2c01566 |
[11] |
Li, J.; Ding, S.; Wang, F.; Zhao, H.; Kou, J.; Akram, M.; Xu, M.; Gao, W.; Liu, C.; Yang, H. J. Colloid Interf. Sci. 2022, 625, 640.
doi: 10.1016/j.jcis.2022.06.052 |
[12] |
Wang, H.; Wang, Y.; Li, Y.; Lan, X.; Ali, B.; Wang, T. ACS Appl. Mater. Interfaces 2020, 12, 34021.
doi: 10.1021/acsami.0c06632 |
[13] |
Yang, L.; Jiang, Z.; Fan, G.; Li, F. Catal. Sci. Technol. 2014, 4, 1123.
doi: 10.1039/c3cy01017a |
[14] |
Baghbanian, S. M.; Farhang, M.; Vahdat, S. M.; Tajbakhsh, M. J. Mol. Catal. A-Chem. 2015, 407, 128.
doi: 10.1016/j.molcata.2015.06.029 |
[15] |
Natte, K.; Goyal, V.; Sarki, N.; Poddar, M. K.; Ray, A. New J. Chem. 2021, 45, 14687.
doi: 10.1039/D1NJ01654G |
[16] |
Zhang, S.; Chang, C. R.; Huang, Z. Q.; Li, J.; Wu, Z.; Ma, Y.; Zhang, Z.; Wang, Y.; Qu, Y. J. Am. Chem. Soc. 2016, 138, 2629.
doi: 10.1021/jacs.5b11413 pmid: 26828123 |
[17] |
Tian, H.; Zhou, J.; Li, Y.; Wang, Y.; Liu, L.; Ai, Y.; Hu, Z.-N.; Li, J.; Guo, R.; Liu, Z.; Sun, H.-b.; Liang, Q. ChemCatChem 2019, 11, 5543.
doi: 10.1002/cctc.v11.22 |
[18] |
Ishikawa, H.; Nakatani, N.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. ACS Catal. 2023, 13, 5744.
doi: 10.1021/acscatal.3c00128 |
[19] |
Lara, P.; Philippot, K. Catal. Sci. Technol. 2014, 4, 2445.
doi: 10.1039/C4CY00111G |
[20] |
Chen, X.; Shen, K.; Ding, D.; Chen, J.; Fan, T.; Wu, R.; Li, Y. ACS Catal. 2018, 8, 10641.
doi: 10.1021/acscatal.8b01834 |
[21] |
Shi, T.; Li, H.; Yao, L.; Ji, W.; Au, C.-T. Appl. Catal. A-Gen. 2012, 425-426, 68.
doi: 10.1016/j.apcata.2012.03.003 |
[22] |
Chen, J. L.; Xu, F.; Ma, F. Q.; Ren, M. N.; Zhou, J. D.; Yu, Z. Q.; Su, W. K. J. Flow Chem. 2021, 11, 823.
doi: 10.1007/s41981-021-00156-3 |
[23] |
Deshpande, R. M.; Mahajan, A. N.; Diwakar, M. M.; Ozarde, P. S.; Chaudhari, R. V. J. Org. Chem. 2004, 69, 4835.
pmid: 15230611 |
[24] |
Liang, X.; Fu, N.; Yao, S.; Li, Z.; Li, Y. Nat. Commun. 2022, 144, 18155.
|
[25] |
Gan, T.; Wang, D. Nano Res. 2023, doi: 10.1007/s12274-023-5700-4.
|
[26] |
Li, R.; Wang, D. Nano Res. 2022, 15, 6888.
doi: 10.1007/s12274-022-4371-x |
[27] |
Li, J.; Li, Y.; Zhang, T. Sci. China Mater. 2020, 63, 889.
doi: 10.1007/s40843-020-1412-y |
[28] |
Li, L. L.; Liu, Y.; Song, S. Y.; Zhang, H. J. Acta Chim. Sinica 2022, 80, 16 (in Chinese).
doi: 10.6023/A21100467 |
(李玲玲, 刘宇, 宋术岩, 张洪杰, 化学学报, 2022, 80, 16.)
doi: 10.6023/A21100467 |
|
[29] |
Hao, Y.-C.; Chen, L.-W.; Li, J.; Guo, Y.; Su, X.; Shu, M.; Zhang, Q.; Gao, W.-Y.; Li, S.; Yu, Z.-L. Nat. Commun. 2021, 12, 2682.
doi: 10.1038/s41467-021-22991-7 pmid: 33976220 |
[30] |
Guo, X.; Lin, S.; Gu, J.; Zhang, S.; Chen, Z.; Huang, S. ACS Catal. 2019, 9, 11042.
doi: 10.1021/acscatal.9b02778 |
[31] |
Lu, X. Q.; Cao, S. F.; Wei, X. F.; Li, S. R.; Wei, S. X. Acta Chim. Sinica 2020, 78, 1001 (in Chinese).
doi: 10.6023/A20060223 |
(鲁效庆, 曹守福, 魏晓飞, 李邵仁, 魏淑贤, 化学学报, 2020, 78, 1001.)
doi: 10.6023/A20060223 |
|
[32] |
Zhao, R. Y.; Ji, G. P.; Liu, Z. M. Chem. J. Chin. Univ. 2022, 43, 189 (in Chinese).
|
(赵润瑶, 纪桂鹏, 刘志敏, 高等学校化学学报, 2022, 43, 189.) (in Chinese).
|
|
[33] |
Jin, X. Y.; Zhang, L. B.; Sun, X. P.; Han, B. X. Chem. J. Chin. Univ. 2022, 43, 11 (in Chinese).
|
(金湘元, 张礼兵, 孙晓甫, 韩布兴, 高等学校化学学报, 2022, 43, 11.)
|
|
[34] |
Zhou, W. W.; Wei, X. Y.; Xu, M. Y.; Fan, F.; Chen, Z. P.; Kang, J.; Zhang, L.; Zhou, A. N. Chinese J. Inorg. Chem. 2023, 39, 1261 (in Chinese).
|
(周文武, 韦晓艺, 徐梦宇, 樊飞, 陈治平, 康洁, 张乐, 周安宁, 无机化学学报, 2023, 39, 1261.)
|
|
[35] |
Huang, J.; Yang, S.; Jiang, S.; Sun, C.; Song, S. ACS Catal. 2022, 12, 14708.
doi: 10.1021/acscatal.2c05014 |
[36] |
Hu, L.; Huang, J.; Wang, J.; Jiang, S.; Sun, C.; Song, S. Appl. Catal. B-Environ. 2023, 320, 121945.
|
[37] |
Jiao, L.; Xu, W.; Wu, Y.; Yan, H.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Chem. Soc. Rev. 2021, 50, 750.
doi: 10.1039/d0cs00367k pmid: 33306069 |
[38] |
Zhang, X.; Li, G.; Chen, G.; Wu, D.; Zhou, X.; Wu, Y. Coordin. Chem. Rev. 2020, 418, 213376.
|
[39] |
Lu, C.; Fang, R.; Chen, X. Adv. Mater. 2020, 32, 1906548.
|
[40] |
Liang, Z.; Shen, J.; Xu, X.; Li, F.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Adv. Mater. 2022, 34, 2200102.
|
[41] |
Jagadeesh, R. V.; Murugesan, K.; Alshammari, A. S.; Neumann, H.; Pohl, M.-M.; Radnik, J.; Beller, M. Science 2017, 358, 326.
doi: 10.1126/science.aan6245 |
[42] |
Li, M.; Chen, S.; Jiang, Q.; Chen, Q.; Guo, X. ACS Catal. 2021, 11, 3026.
doi: 10.1021/acscatal.0c05479 |
[43] |
Zhou, D.; Zhang, L.; Liu, X.; Qi, H.; Liu, Q.; Yang, J.; Su, Y.; Ma, J.; Yin, J.; Wang, A. Nano Res. 2022, 15, 519.
doi: 10.1007/s12274-021-3511-z |
[44] |
Song, Z.; Zhang, L.; Doyle-Davis, K.; Fu, X.; Luo, J. L.; Sun, X. Adv. Energy Mater. 2020, 10, 2001561.
|
[45] |
Ma, S.; Han, W.; Han, W.; Dong, F.; Tang, Z. J. Mater. Chem. A 2023, 11, 3315.
doi: 10.1039/D2TA08735A |
[46] |
Hwang, J. Korean J. Chem. Eng. 2021, 38, 1104.
doi: 10.1007/s11814-021-0741-4 |
[47] |
Ou, J.; Xiang, J.; Liu, J.; Sun, L. ACS Appl. Mater. Interfaces 2019, 11, 14862.
doi: 10.1021/acsami.8b21626 |
[48] |
Ou, J.; Hu, B.; He, S.; Wang, W.; Han, Y. Sol. Energy 2020, 201, 693.
doi: 10.1016/j.solener.2020.03.050 |
[49] |
Ou, J.; He, S.; Wang, W.; Tan, H.; Liu, K. Org. Chem. Front. 2021, 8, 3102.
doi: 10.1039/D1QO00175B |
[50] |
Ou, J.; Tan, H.; He, S.; Wang, W.; Hu, B.; Yu, G.; Liu, K. J. Org. Chem. 2021, 86, 14974.
doi: 10.1021/acs.joc.1c01701 |
[51] |
Liu, K.-J.; Wang, Z.; Lu, L.-H.; Chen, J.-Y.; Zeng, F.; Lin, Y.-W.; Cao, Z.; Yu, X.; He, W.-M. Green Chem. 2021, 23, 496.
doi: 10.1039/D0GC02663H |
[52] |
Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; Zhou, G.; Wei, S.; Li, Y. Angew. Chem. Int. Ed. 2016, 55, 10800.
doi: 10.1002/anie.v55.36 |
[53] |
Li, X.; Surkus, A. E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Brückner, A.; Beller, M. Angew. Chem. Int. Ed. 2020, 59, 15849.
doi: 10.1002/anie.v59.37 |
[54] |
Cao, Y.; Liu, K.; Wu, C.; Zhang, H.; Zhang, Q. Appl. Catal. A-Gen. 2020, 592, 117434.
|
[55] |
Huang, H.; Tan, M.; Wang, X.; Zhang, M.; Guo, S.; Zou, X.; Lu, X. ACS Appl. Mater. Interfaces 2018, 10, 5413.
doi: 10.1021/acsami.7b14513 |
[1] | 黄家翩, 刘飞, 吴劼. 二氟环丙烯参与的有机反应研究进展★[J]. 化学学报, 2023, 81(5): 520-532. |
[2] | 张晓萌, 李希雅, 熊晚枫, 李红芳, 曹荣. 基于超分子晶体制备超细铂纳米颗粒用于催化加氢硝基苯[J]. 化学学报, 2021, 79(2): 180-185. |
[3] | 陈学勇, 韦朝海, 邓秀琼, 夏芳, 于旭彪. 硝基芳烃对梨形四膜虫毒性的定量构效关系解析[J]. 化学学报, 2011, 69(21): 2618-2626. |
[4] | 王桂香, 肖鹤鸣, 居学海, 贡雪东. 含能材料的密度、爆速、爆压和静电感度的理论研究[J]. 化学学报, 2007, 65(6): 517-524. |
[5] | 闫秀芬, 舒远杰, 王连军, 肖鹤鸣. 硝基芳烃对圆腹雅罗鱼毒性的DFT研究[J]. 化学学报, 2007, 65(17): 1789-1796. |
[6] | 闫秀芬,肖鹤鸣,居学海,贡雪东. 硝基芳烃对梨形四膜虫毒性的QSAR研究[J]. 化学学报, 2006, 64(5): 375-380. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||