化学学报 ›› 2024, Vol. 82 ›› Issue (4): 409-415.DOI: 10.6023/A23120532 上一篇 下一篇
研究论文
王国景a,b,*(), 陈永辉a, 张秀芹a, 张俊笙a, 徐俊敏c,*(), 王静c,*()
投稿日期:
2023-12-13
发布日期:
2024-03-06
基金资助:
Guojing Wanga,b(), Yonghui Chena, Xiuqin Zhanga, Junsheng Zhanga, Junmin Xuc,*(), Jing Wangc,*()
Received:
2023-12-13
Published:
2024-03-06
Contact:
* E-mail: Supported by:
文章分享
在铁磁光催化剂中, 大多数光生电荷具有相同的自旋状态, 因此可以有效抑制光生电子和空穴的复合. 利用BiVO4 {010}和{110}晶面中氧空位的形成能不同, 通过晶面取向和氧空位的协同作用来调控BiVO4的铁磁性能. 在N2气氛中退火后, BiVO4晶面异质结中氧空位的比例随着{010}/{110}晶面比例的增加而降低, 因为{010}晶面上氧空位的形成能低于{110}晶面. {010}/{110}晶面比例较低的BiVO4晶面异质结的铁磁性能优于{010}/{110}晶面比例较高的BiVO4, 因为前者颗粒尺寸更小、更立体, 其比表面积和界面区域更大, 所以其表面未饱和自旋对总磁矩的贡献更大. {010}/{110}比例较高的BiVO4晶面异质结具有更大的光电流密度和光电催化产氢效率, 源于BiVO4{010}晶面比{110}晶面具有更高的电荷迁移率、更好的吸附特性和更低的能垒. 并且氧空位的引入也提高了BiVO4的制氢效率.
王国景, 陈永辉, 张秀芹, 张俊笙, 徐俊敏, 王静. 氧空位控制BiVO4晶面异质结的磁性和光电催化性能[J]. 化学学报, 2024, 82(4): 409-415.
Guojing Wang, Yonghui Chen, Xiuqin Zhang, Junsheng Zhang, Junmin Xu, Jing Wang. Magnetic and Photoelectrocatalytic Properties of BiVO4 Surface Heterojunctions Controlled by Oxygen Vacancies[J]. Acta Chimica Sinica, 2024, 82(4): 409-415.
[1] |
AlSalka, Y.; Granone, L. I.; Ramadan, W.; Hakki, A.; Dillert, R.; Bahnemann, D. W. Appl. Catal., B 2019, 244, 1065.
doi: 10.1016/j.apcatb.2018.12.014 |
[2] |
Chehade, G.; Dincer, I. Fuel 2021, 299, 120845.
doi: 10.1016/j.fuel.2021.120845 |
[3] |
Sivagurunathan, P.; Sivagurunathan, P.; Kadier, A.; Mudhoo, A.; Kumar, G.; Chandrasekhar, K.; Kobayashi, T.; Xu, K. In Nanomaterials: Biomedical, Environmental, and Engineering Applications, Eds.: Kanchi, S.; Ahmed, S.; Sabela, M. I.; Hussain, C. M., Scrivener Publishing LLC, Beverly, 2018, pp. 217-238.
|
[4] |
McKone, J. R.; Lewis, N. S.; Gray, H. B. Chem. Mater. 2014, 26, 407.
doi: 10.1021/cm4021518 |
[5] |
Lewis, N. S. Chem. Rev. 2015, 115, 12631.
doi: 10.1021/acs.chemrev.5b00654 |
[6] |
Chu, S.; Li, W.; Yan, Y.; Hamann, T.; Shih, I.; Wang, D.; Mi, Z. Nano Futures 2017, 1, 022001.
doi: 10.1088/2399-1984/aa88a1 |
[7] |
Zhu, S.; Wang, D. Adv. Energy Mater. 2017, 7, 1700841.
doi: 10.1002/aenm.v7.23 |
[8] |
Walter, M. G.; Warren, E. L.; Mckone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446.
doi: 10.1021/cr1002326 |
[9] |
Kim, T. W.; Ping, Y.; Galli, G. A.; Choi, K. S. Nat. Commun. 2015, 6, 8769.
doi: 10.1038/ncomms9769 |
[10] |
Wang, W.; Strohbeen, P. J.; Lee, D.; Zhou, C.; Kawasaki, J. K.; Choi, K. S.; Liu, M.; Galli, G. Chem. Mater. 2020, 32, 2899.
doi: 10.1021/acs.chemmater.9b05047 |
[11] |
Guo, M.; Wang, Y.; He, Q.; Wang, W.; Wang, W.; Fu, Z.; Wang, H. RSC Adv. 2015, 5, 58633.
doi: 10.1039/C5RA07603J |
[12] |
Lv, D.; Zhang, D.; Pu, X.; Kong, D.; Lu, Z.; Shao, X.; Ma, H.; Dou, J. Sep. Purif. Technol. 2017, 174, 97.
doi: 10.1016/j.seppur.2016.10.010 |
[13] |
Hu, Y.; Fan, J.; Pu, C.; Li, H.; Liu, E.; Hu, X. J. Photochem. Photobiol., A 2017, 337, 172.
doi: 10.1016/j.jphotochem.2016.12.035 |
[14] |
Malathi, A.; Madhavan, J.; Ashokkumar, M.; Arunachalam, P. Appl. Catal., A 2018, 555, 47.
doi: 10.1016/j.apcata.2018.02.010 |
[15] |
Li, J. Guangzhou Chem. Ind. 2018, 46, 20 (in Chinese)
|
(李杰, 广州化工, 2018, 46, 20.)
|
|
[16] |
Chen, Z. Y.; Sun, J.; Luo, X. W.; Li, X. Y.; Shen, M. X.; Huang, Z. J. Environ. Chem. 2020, 39, 2129 (in Chinese)
|
(陈紫盈, 孙洁, 罗雪文, 李秀莹, 沈敏贤, 黄柱坚, 环境化学, 2020, 39, 2129.)
|
|
[17] |
Li, J.; Pang, X. J.; Wu, Y. F. New Chem. Mater. 2020, 48, 19 (in Chinese)
|
(李杰, 逄显娟, 吴艳芳, 化工新型材料, 2020, 48, 19.)
|
|
[18] |
Xiao, L. G.; Wang, Y. M. Mod. Chem. Ind. 2023, 43, 41 (in Chinese)
|
(肖力光, 王一鸣, 现代化工, 2023, 43, 41.)
|
|
[19] |
Rao, P. M.; Cai, L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J. M.; Yang, P.; Zheng, X. Nano Lett. 2014, 14, 1099.
doi: 10.1021/nl500022z |
[20] |
Wang, S. C.; Chen, P.; Yun, J. H.; Hu, Y. X.; Wang, L. Z. Angew. Chem., Int. Ed. 2017, 56, 8500.
doi: 10.1002/anie.v56.29 |
[21] |
Pan, Q. G.; Yang, K. R.; Wang, G. L.; Li, D. D.; Sun, J.; Yang, B.; Zou, Z. Q.; Hu, W. B.; Wen, K.; Yang, H. Chem. Eng. J. 2019, 372, 399.
doi: 10.1016/j.cej.2019.04.161 |
[22] |
Regmi, C.; Kshetri, Y. K.; Pandey, R. P.; Kim, T. H.; Gyawali, G.; Lee, S. W. J. Environ. Sci. 2019, 75, 84.
doi: 10.1016/j.jes.2018.03.005 |
[23] |
Qin, Q.; Cai, Q.; Li, J.; Jian, C.; Hong, W.; Liu, W. Solar RRL 2019, 3, 1900301.
doi: 10.1002/solr.v3.12 |
[24] |
Zhang, Y.; Chen, X.; Jiang, F.; Bu, Y.; Ao, J. P. ACS Sustainable Chem. Eng. 2020, 8, 9184.
doi: 10.1021/acssuschemeng.0c03120 |
[25] |
Chen, S.; Huang, D.; Xu, P.; Xue, W.; Lei, L.; Chen, Y.; Zhou, C.; Deng, R.; Wang, W. Chem. Eng. J. 2021, 420, 127573.
doi: 10.1016/j.cej.2020.127573 |
[26] |
Xu, H.; Fan, W.; Zhao, Y.; Chen, B.; Gao, Y.; Chen, X.; Xu, D.; Shi, W. Chem. Eng. J. 2021, 411, 128480.
doi: 10.1016/j.cej.2021.128480 |
[27] |
Li, C.; Feng, F.; Jian, J.; Xu, Y.; Li, F.; Wang, H.; Jia, L. J. Mater. Sci. Technol. 2021, 79, 21.
doi: 10.1016/j.jmst.2020.11.037 |
[28] |
Yan, J. C.; Shi, Q.; Li, H. S.; Dai, S. H.; Gan, L. M.; Dong, H. Y.; Zhu, Q. Y.; Liu, S. G.; Tan, X. C.; Gao, J. Acta Sci. Circumst. 2021, 41, 2120 (in Chinese)
|
(闫敬超, 施钦, 李欢松, 戴世华, 甘林萌, 董慧峪, 朱倩颖, 刘绍刚, 谭学才, 高健, 环境科学学报, 2021, 41, 2120.)
|
|
[29] |
Liu, Y. F.; Yang, Y. R.; Sun, Z. X.; Liu, C.; Qiu, M.; Gao, F. J. South China Normal Univ. (Nat. Sci. Ed.) 2022, 54, 22 (in Chinese)
|
(刘宇飞, 杨玉蓉, 孙政新, 刘畅, 邱敏, 高帆, 华南师范大学学报(自然科学版), 2022, 54, 22.)
|
|
[30] |
Pan, S. Y.; Zhao, C.; Li, M.; Hu, X. D. Ind. Water Treat. 2023, 43, 146 (in Chinese)
|
(潘淑颖, 赵超, 李曼, 胡雪荻, 工业水处理, 2023, 43, 146.)
doi: 10.19965/j.cnki.iwt.2022-1211 |
|
[31] |
Yue, X. Y.; Cheng, L.; Fan, J. J.; Xiang, Q. J. Appl. Catal., B 2022, 304, 120979.
doi: 10.1016/j.apcatb.2021.120979 |
[32] |
Wang, S. C.; He, T. W.; Chen, P.; Du, A. J.; Ostrikov, K. K.; Huang, W.; Wang, L. Z. Adv. Mater. 2020, 32, 2001385.
doi: 10.1002/adma.v32.26 |
[33] |
Zhao, D.; Zong, W.; Fan, Z.; Fang, Y. W.; Xiong, S.; Du, M.; Wu, T.; Ji, F.; Xu, X. J. Nanopart. Res. 2017, 19, 124.
doi: 10.1007/s11051-017-3818-6 |
[34] |
Wang, S.; Chen, P.; Bai, Y.; Yun, J. H.; Liu, G.; Wang, L. Adv. Mater. 2018, 30, e1800486.
|
[35] |
Wu, J. M.; Chen, Y.; Pan, L.; Wang, P.; Cui, Y.; Kong, D.; Wang, L.; Zhang, X.; Zou, J. J. Appl. Catal., B 2018, 221, 187.
|
[36] |
Shi, C.; Dong, X.; Wang, X.; Ma, H.; Zhang, X. Chin. J. Catal. 2018, 39, 128.
doi: 10.1016/S1872-2067(17)62990-5 |
[37] |
Li, G. L. RSC Adv. 2017, 7, 9130.
doi: 10.1039/C6RA28006D |
[38] |
Wang, G.; Xiong, S.; Chen, Y.; Wang, C.; Lv, S.; Jia, K.; Xiang, Y.; Liu, J.; Liu, C.; Li, Z. J. Mater. Sci. Technol. 2023, 160, 240.
doi: 10.1016/j.jmst.2023.02.053 |
[39] |
Gao, W.; Peng, R.; Yang, Y.; Zhao, X.; Cui, C.; Su, X.; Qin, W.; Dai, Y.; Ma, Y.; Liu, H.; Sang, Y. ACS Energy Lett. 2021, 6, 2129.
doi: 10.1021/acsenergylett.1c00682 |
[40] |
Mtangi, W.; Tassinari, F.; Vankayala, K.; Vargas Jentzsch, A.; Adelizzi, B.; Palmans, A. R.; Fontanesi, C.; Meijer, E. W.; Naaman, R. J. Am. Chem. Soc. 2017, 139, 2794.
doi: 10.1021/jacs.6b12971 |
[41] |
Javed, H.; Rehman, A.; Mussadiq, S.; Shahid, M.; Khan, M. A.; Shakir, I.; Agboola, P. O.; Aboud, M. F. A.; Warsi, M. F. Synth. Met. 2019, 254, 1.
doi: 10.1016/j.synthmet.2019.05.013 |
[42] |
Garcés-Pineda, F. A.; Blasco-Ahicart, M.; Nieto-Castro, D.; López, N.; Galán-Mascarós, J. R. Nat. Energy 2019, 4, 519.
doi: 10.1038/s41560-019-0404-4 |
[43] |
Yu, C. L.; Wen, H. R.; Xiang, B.; Zhang, C. X. J. Jiangxi Univ. Sci. Technol. 2009, 30, 9 (in Chinese)
|
(余长林, 温和瑞, 相彬, 张彩霞, 江西理工大学学报, 2009, 30, 9.)
|
|
[44] |
Wang, J. L.; Liao, R.; Li, Y. L.; Pan, X. Q.; Huang, H. Y.; Guo, B. G.; Liu, H. F.; Xie, R. S. J. Sichuan Univ. (Nat. Sci. Ed.) 2020, 57, 341 (in Chinese)
|
(王捷琳, 廖蕊, 李园利, 潘小琴, 黄鹤燕, 郭宝刚, 刘海峰, 谢瑞士, 四川大学学报(自然科学版), 2020, 57, 341.)
|
|
[45] |
Zhao, Y.; Ding, C.; Zhu, J.; Qin, W.; Tao, X.; Fan, F.; Li, R.; Li, C. Angew. Chem., Int. Ed. 2020, 59, 9653.
doi: 10.1002/anie.v59.24 |
[46] |
Tan, H.; Zhao, Z.; Zhu, W. B.; Coker, E. N.; Li, B.; Zheng, M.; Yu, W.; Fan, H.; Sun, Z. ACS Appl. Mater. Interfaces 2014, 6, 19184.
doi: 10.1021/am5051907 |
[47] |
Li, Z. P.; Dai, J. F.; Cheng, C.; Feng, W. Mater. Rev. 2022, 36, 20120114 (in Chinese)
|
(李增鹏, 戴剑锋, 成晨, 冯伟, 材料导报, 2022, 36, 20120114.)
|
|
[48] |
Braslavsky, S. E.; Braun, A. M.; Cassano, A. E.; Emeline, A. V.; Litter, M. I.; Palmisano, L.; Parmon, V. N.; Serpone, N. Pure Appl. Chem. 2011, 83, 931.
doi: 10.1351/PAC-REC-09-09-36 |
[49] |
Chen, X. J.; Shi, R.; Chen, Q.; Zhang, Z. J.; Jiang, W. J.; Zhu, Y. F.; Zhang, T. R. Nano Energy 2019, 59, 644.
doi: 10.1016/j.nanoen.2019.03.010 |
[50] |
Yang, J.; Wang, D.; Zhou, X.; Li, C. Chem.-Eur. J. 2013, 19, 1320.
doi: 10.1002/chem.v19.4 |
[51] |
Tan, H. L.; Wen, X.; Amal, R.; Ng, Y. H. J. Phys. Chem. Lett. 2016, 7, 1400.
doi: 10.1021/acs.jpclett.6b00428 |
[52] |
Zhao, G. S.; Li, Y. X.; Niu, S. Y.; Liu, W.; Chang, L. M. Bull. Chin. Ceram. Soc. 2014, 33, 2011 (in Chinese)
|
(赵国升, 李玉鑫, 牛思宇, 刘伟, 常立民, 硅酸盐通报, 2014, 33, 2011.)
|
|
[53] |
Liu, W.; Zhao, G. S.; Chang, L. M.; An, M. Z. Bull. Chin. Ceram. Soc. 2016, 35, 2841 (in Chinese)
|
(刘伟, 赵国升, 常立民, 安茂忠, 硅酸盐通报, 2016, 35, 2841.)
|
|
[54] |
Yue, X. Y.; Cheng, L.; Li, F.; Fan, J. J.; Xiang, Q. J. Angew. Chem., Int. Ed. 2022, 61, e202208414.
doi: 10.1002/anie.v61.40 |
[1] | 张安琪, 姚淇露, 卢章辉. 水合肼分解产氢催化剂研究进展[J]. 化学学报, 2021, 79(7): 885-902. |
[2] | 张旭寒, 邓博文, 范海东, 黄文辉, 张彦威. 基于锌锗二元氧化物的光热协同分解CO2研究[J]. 化学学报, 2020, 78(10): 1120-1126. |
[3] | 李鑫, 张太阳, 王甜, 赵一新. 金属卤化物钙钛矿光催化的研究进展[J]. 化学学报, 2019, 77(11): 1075-1088. |
[4] | 许辰宇, 林伽毅, 潘富强, 邓博文, 王智化, 周俊虎, 陈云, 马京程, 顾志恩, 张彦威. Ni离子替位掺杂TiO2增强光热化学循环还原CO2研究[J]. 化学学报, 2017, 75(7): 699-707. |
[5] | 阎建辉,刘强,关鲁雄,梁丰,顾豪杰. 载铂Sr(Zr1-xYx)O3-δ-TiO2异质结光催化剂模拟太阳光催化产氢[J]. 化学学报, 2008, 66(8): 879-884. |
[6] | 师进文, 郭烈锦. Cr或V掺杂的HMS在甲酸溶液中的光催化产氢性能研究[J]. 化学学报, 2007, 65(4): 323-328. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||