化学学报 ›› 2025, Vol. 83 ›› Issue (3): 237-301.DOI: 10.6023/A24120389 上一篇    下一篇

研究论文

铟锡双金属修饰层协同抑制锌枝晶生长

李奔a, 赵宇b, 高欣a, 孙雨涵a, 赵宝雁a, 罗巧梅a, 鲍晓冰a, 苟蕾a, 崔艳华b,*(), 樊小勇a,*()   

  1. a 长安大学 材料科学与工程学院 西安 710061
    b 中国工程物理研究院电子工程研究所 绵阳 621000
  • 投稿日期:2024-12-31 发布日期:2025-02-26
  • 基金资助:
    国家自然科学基金面上项目(22179011); 西藏自治区重点研发项目(XZ202401ZY0104)

The Indium-tin Bimetallic Modification Layer Synergistically Inhibited Zinc Dendrite Growth

Ben Lia, Yu Zhaob, Xin Gaoa, Yuhan Suna, Baoyan Zhaoa, Qiaomei Luoa, Xiaobing Baoa, Lei Goua, Yanhua Cuib(), Xiaoyong Fana()   

  1. a School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China
    b Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang, Sichuan Province 621000, China
  • Received:2024-12-31 Published:2025-02-26
  • Contact: *E-mail: cuiyanhua@netease.com; xyfan@chd.edu.cn; Tel.: 029-82337340
  • Supported by:
    National Natural Science Foundation of China(22179011); Key Research and Development Programs in Tibet Autonomous Region(XZ202401ZY0104)

水系锌离子电池因其低成本、高安全性和环境友好等优点, 在规模化储能领域展现出巨大的应用潜力. 然而, 枝晶生长、表面钝化以及析氢等副反应导致的锌电极稳定性差和寿命短的问题, 限制了水系锌离子电池在大规模应用中的推广. 本研究通过气相沉积工艺, 在锌电极表面依次沉积了铟锡双金属修饰层, 综合利用铟金属层的高析氢过电位及其较强的锌原子吸附能, 锡金属层较低的锌离子迁移能垒, 协同抑制锌电极枝晶生长、腐蚀和析氢等副反应, 同时加速界面处锌离子的传输动力学. 结果显示, Zn@In@Sn电极在电流密度为1 mA•cm−2, 面积容量为0.5 mAh•cm−2条件下能保持40 mV的低沉积/剥离电位差, 并实现超过3000 h的稳定循环, 远优于纯铟修饰层(64 mV, 1500 h)和纯锡修饰层(85 mV, 1600 h). 与MnO2正极材料匹配组装的全电池, 在1 A•g−1的电流密度下, 经过1000个稳定循环后, 容量保持127.9 mAh•g−1, 显示出优异的电化学性能和循环稳定性.

关键词: 锌离子电池, 锌电极, 铟锡双金属修饰层, 无枝晶, 高传输动力学

Aqueous zinc-ion batteries are considered as a promising candidate for future grid energy storage due to their cost-effectiveness, safety, and environmental compatibility, however their large scale application is impeded by the stability and longevity issues stemming from dendrite growth, and side reactions such as passivation and hydrogen evolution. Herein, an indium-tin bimetallic layer is introduced onto the Zn electrode surface via sequential vapor deposition of indium and tin, comprehensively utilizing the indium layer with higher hydrogen evolution overpotential and greater adsorption energy for Zn atoms, the Sn layer with lower Zn2+ migration barrier to synergistically inhibit Zn dendrites, corrosion and hydrogen evolution, and simultaneously facilitate rapid transport of Zn2+ at the interface. The thickness of In-Sn layer is determined to be only two hundred nanometers, which can not only efficiently protect Zn electrode but also avoid the energy loss due to the increase of Zn electrode resistance. Both the X-ray diffraction (XRD) peaks of In and Sn are detected, assuring the synergistical effect of In and Sn layer. The contact angle of 2.0 mol•L−1 ZnSO4 on Zn electrode decreases from 102.31° to 54.35° after coating In-Sn layer, decreasing the contact impedance between Zn electrode and electrolyte. The linear sweep voltammetry (LSV) results demonstrate the hydrogen evolution potential decreases from -1.776 V (pure Zn) to -1.979 V after coating In-Sn layer, indicating less hydrogen evolution and side reactions. The corrosion current density of Zn@In@Sn displays the smallest value of 0.868 mA•cm−2, compared with those of Zn (4.017 mA•cm−2) and Zn@In (3.515 mA•cm−2), demonstrating less corrosion. Consequently, the Zn@In@Sn electrode demonstrates an extended lifespan of up to 3000 h under low polarization of 40 mV at a current density of 1 mA•cm−2 and an areal capacity of 0.5 mAh•cm−2, obviously better than those of Zn@In (64 mV, 1500 h) and Zn@Sn (85 mV, 1600 h). The full cell using manganese dioxide as the cathode and Zn@In@Sn as the anode maintains approximately 127.9 mAh•g−1 after 1000 stable cycles at a current density of 1 A•g−1.

Key words: Zn-ion battery, Zn electrode, indium-tin bimetallic layer, dendrite-free, high transferring kinetics