化学学报 ›› 2024, Vol. 82 ›› Issue (4): 416-425.DOI: 10.6023/A24010006 上一篇    下一篇

研究论文

亲锌聚阴离子交联聚合物薄膜与铜刻蚀协同稳定锌负极

郝再涛, 赵健飞, 李慧同, 李展, 潘朗, 李江*()   

  1. 长安大学 材料科学与工程学院 西安 710061
  • 投稿日期:2024-01-08 发布日期:2024-04-02
  • 基金资助:
    国家自然科学基金(22008011); 国家级大学生创新创业训练计划项目(S202310710274); 陕西省化学与生物学基础科学研究项目(22JHQ024)

Stable Zinc Anodes through Synergistic Copper Etching and Zincophilic Polyanionic Crosslinking Membrane

Zaitao Hao, Jianfei Zhao, Huitong Li, Zhan Li, Lang Pan, Jiang Li*()   

  1. School of Materials Science and Engineering, Chang'an University, Xi'an 710061
  • Received:2024-01-08 Published:2024-04-02
  • Contact: * E-mail: lijiang@chd.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22008011); National College Student’s Innovation and Entrepreneurship Training Program(S202310710274); Shaanxi Fundamental Science Research Project for Chemistry & Biology(22JHQ024)

可充电水系锌基电池具有高容量、高能量密度、低氧化还原电位、低成本、安全性好等优点, 被认为是一种可替代的能源存储器件. 然而, 在镀锌/剥离过程中, 锌金属负极不可控的枝晶生长和复杂的副反应极大地降低了库伦效率, 其可逆性较差, 阻碍锌基电池的实际应用. 在此, 开发了一种简单、可控且有效的方法, 首先利用电化学沉积法在锌箔上沉积了一种由聚苯乙烯磺酸钠(PSS)与氯化锌反应得到孔道丰富的聚阴离子交联聚合物薄膜(记为PZ, 其中P代表PSS、Z代表ZnCl2), 然后再利用置换反应引入亲锌的化学惰性金属铜, 得到亲锌聚阴离子交联聚合物与铜刻蚀保护层(记为PZC, 其中C代表Cu). PZC@Zn具有丰富的磺酸根官能团促进[Zn(H2O)6]2+脱溶, 提高Zn2+界面传输速率, 排斥SO42-与锌负极接触. 通过重建铜刻蚀层, 铜的高亲锌性促进了沉积动力学, 铜的化学惰性抑制了副反应的发生. 结果表明, 在5 mA•cm-2的高电流密度下, PZC@Zn//PZC@Zn对称电池寿命高达4055 h(比裸锌对称电池提高了31倍), 累积电镀容量达到10.14 Ah•cm-2, Ti//PZC@Zn半电池库伦效率(CE)为98.28%, 可以实现稳定且可逆的镀锌/剥离. YP-50F//PZC@Zn锌离子混合超级电容器在2 A•g-1下稳定循环15000次, 放电比容量高达82.35 mAh•g-1. α-MnO2//PZC@Zn水系锌离子电池在1 A•g-1下循环2000次后放电比容量高达103.57 mAh•g-1, CE为99.58%. 这项工作为设计先进的无枝晶锌金属负极提供了一种新方法.

关键词: 电化学沉积, 薄膜, 铜刻蚀, 脱溶, 无枝晶锌负极

Rechargeable aqueous zinc-based batteries offer several advantages, including high capacity, high energy density, low redox potential, low cost-effectiveness, and good safety, making them a viable option for energy storage alternatives. However, the dendrite growth and side reactions on the zinc metal anode during the galvanization/stripping process significantly decrease the Coulombic Efficiency (CE), reversibility and hinder their practical application. Therefore, we have developed a simple, and effective method to solve this problem. Firstly, a polyanionic crosslinked polymer film (referred to as PZ, where P represents PSS and Z represents ZnCl2) was deposited on zinc foil using an electrochemical deposition method, resulting from the reaction of sodium polystyrene sulfonate (PSS) and zinc chloride. Secondly, a displacement reaction is employed to introduce the chemically inert copper metal that is zinophilic, resulting in a cross-linked polymer with zinophilic polyanion and a copper etching protective layer (denoted as PZC, where C represents Cu). The rich sulfonate acid groups can promote the exsolution of [Zn(H2O)6]2+, improve the interface transfer of Zn2+, and repel the contact between SO42- and the zinc anode. Through reconstructing the copper etching protective layer, the high zinc affinity of copper promotes deposition kinetics, while the chemical inertness of copper suppresses the occurrence of side reactions. The results indicate that at a high current density of 5 mA•cm-2, PZC@Zn//PZC@Zn symmetric cells have a lifespan of up to 4055 h (31-fold enhancement over the performance of the bare zinc symmetric cells), and a cumulative electroplating capacity of 10.14 Ah•cm-2. In addition, Ti//PZC@Zn half-cell demonstrates a CE of 98.28%, showcasing stable and reversible galvanization/stripping process. Furthermore, the YP-50F//PZC@Zn zinc-ion hybrid supercapacitor display stable cycling performance with 15000 cycles at 2 A•g-1 and deliver a discharge specific capacity of up to 82.35 mAh•g-1. The α-MnO2//PZC@Zn aqueous zinc-ion batteries exhibit a discharge-specific capacity of 103.57 mAh•g-1 after 2000 cycles at 1 A•g-1 with a CE of 99.58%. This study gives a novel approach to design advanced dendrite-free zinc metal anodes and presents promising implications for future development.

Key words: electrochemical deposition, membrane, copper etching, exsolution, dendrite-free Zn anode