化学学报 ›› 2025, Vol. 83 ›› Issue (9): 1035-1045.DOI: 10.6023/A25050144 上一篇    下一篇

研究展望

新型功能性低维金属有机磁体的第一性原理设计

吕海峰a, 李星星a,b,*()   

  1. a 中国科学技术大学 精准智能化学全国重点实验室 合肥 230026
    b 中国科学技术大学化学物理系 合肥 230026
  • 投稿日期:2025-05-07 发布日期:2025-07-14
  • 作者简介:

    吕海峰, 中国科学技术大学副研究员. 2019年获中国科学技术大学博士学位. 研究方向为理论与计算化学, 主要从事低维功能材料理论设计与模拟, 近五年来在Nat. Phys.、Nat. Chem.、J. Am. Chem. Soc.、PRL等SCI期刊发表第一/通讯(含共同)作者论文40余篇.

    李星星, 中国科学技术大学特任教授. 2015年于中国科学技术大学获博士学位. 2023年获基金委优秀青年基金资助. 长期致力于低维自旋材料和分子器件的第一性原理研究. 迄今为止在Nature Nanotech.、Nat. Commun.、Sci. Adv.、JACS、Angew、PRL等SCI期刊发表第一/通讯(含共同)作者论文60余篇. 曾获中国化学会青年化学奖、中国科学院院长特别奖等奖励.

    “中国青年化学家”专辑.

  • 基金资助:
    国家自然科学基金(22303092); 国家自然科学基金(22273092); 国家自然科学基金(22322304)

First-Principles Design of Low-Dimensional Organometallic Magnets with Novel Functions

Haifeng Lva, Xingxing Lia,b,*()   

  1. a State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026
    b Department of Chemical Physics, University of Science and Technology of China, Hefei 230026
  • Received:2025-05-07 Published:2025-07-14
  • Contact: * E-mail: lixx@ustc.edu.cn
  • About author:

    For the VSI “Rising Stars in Chemistry”.

  • Supported by:
    National Natural Science Foundation of China(22303092); National Natural Science Foundation of China(22273092); National Natural Science Foundation of China(22322304)

低维磁性材料能够同时利用电子的自旋和电荷自由度进行信息的存储、处理和传递, 在下一代高速信息技术中展现出重要应用前景. 然而, 低维磁性材料发展面临着实验合成和表征困难、居里温度低、功能单一等问题. 针对这一现状, 通过第一性原理计算方法对低维磁性材料进行性能定制是解决上述问题的重要途径之一. 在此背景下, 金属有机配位体系凭借其独特的结构可设计性受到广泛的关注, 其丰富的过渡金属中心和多样化的有机配体库为低维磁性材料设计提供了广阔空间. 其中, 可精确调控的配位化学环境能有效地调制金属/配体的电荷态和自旋态, 从而诱导产生自旋极化. 而且, 金属和配体之间为配位键, 轨道耦合形式多样且可调, 为实现高居里温度、多样的磁相互作用提供了理想平台. 此外, 有机配体方便进行化学修饰和构象调控, 有利于实现磁性相变体系和多功能集成的自旋电子器件. 为此, 系统总结了低维磁性金属有机材料第一性原理设计的最新研究进展, 重点阐述了金属有机体系实现特定功能性磁体的几个关键设计策略, 包括: 室温稳定亚铁磁体的构筑方法、磁性相变的化学调控策略、多铁磁体设计方法、具有显著Rashba效应的金属有机材料设计方案、双极磁性分子的设计原理、新型交变磁体的创制途径, 以及电场调控磁性的微观机制等. 最后, 探讨了结合机器学习方法实现具有高磁晶各向异性能的低维金属有机磁体的研究进展. 通过系统总结金属有机体系在低维磁性材料设计中的独特优势与现存挑战, 该展望期待能为后续相关研究提供前瞻性的理论指导与技术路线.

关键词: 第一性原理设计, 室温磁性, 低维金属有机体系, d-p直接交换作用, 室温多铁, 双极磁性分子, 交变磁体

Low-dimensional magnetic materials, which can simultaneously utilize the electrons’ spin and charge degrees of freedom for data storage, processing and transmission, exhibit significant potentials for applications in next-generation information technologies. However, the development of low-dimensional magnetic materials faces severe challenges such as the difficulties of experimental synthesis and characterization, usually low Curie temperatures, lack of effective modulation, and limited function integration. First-principles design of novel low-dimensional functional magnetic materials has thus emerged as a crucial approach to addressing these issues. In this context, organometallic systems have garnered widespread attentions due to their rich chemical tunability. Their diverse transition metal centers and extensive organic ligand libraries provide a vast design space for low-dimensional magnetic materials. The precisely controllable coordination environment can effectively modulate the charge and spin states of metal/ligand centers. Moreover, the coordination bonds between metals and ligands exhibit diverse and adjustable orbital coupling, offering an ideal platform for achieving high Curie temperatures and varied magnetic interactions. Additionally, the chemical modifiability and conformational flexibility of organic ligands facilitate the construction of magnetic phase-transition systems and multifunctional spintronic devices. This review aims to systematically summarize recent advances in the first-principles design of low-dimensional magnetic organometallic materials with targeted functions. Several key design strategies are highlighted, including methods for constructing stable magnets with long-range room-temperature ferrimagnetism, chemical modulation strategies for magnetic phase transitions, approaches to designing room-temperature multiferroic materials, principles for creating metal-organic materials with giant Rashba effects, design rules for bipolar magnetic molecules, inverse design of altermagnetic metal-organic frameworks (MOFs), and microscopic mechanisms of electric-field-controlled magnetism. Finally, the integration of machine learning methods to achieve low-dimensional metal-organic magnets with high magnetic anisotropy is discussed. By systematically outlining the unique advantages and existing challenges of organometallic systems in the design of low-dimensional magnetic materials, along with the latest experimental breakthroughs, this review is expected to provide theoretical guidance and technical pathways for future related researches.

Key words: first-principles design, room-temperature magnetism, low-dimensional organometallics, d-p direct interaction, room-temperature multiferroicity, bipolar magnetic molecule, altermagnetism