化学学报 ›› 2025, Vol. 83 ›› Issue (9): 1025-1034.DOI: 10.6023/A25050158 上一篇    下一篇

研究展望

反转电子态(σ0π2)卡宾的发展及其研究展望

刘郅勍, 刘柳*()   

  1. 南方科技大学 化学系 深圳 518055
  • 投稿日期:2025-05-11 发布日期:2025-06-23
  • 作者简介:

    刘郅勍, 南方科技大学2021级本科生, 目前在刘柳课题组开展主族元素化学相关研究.

    刘柳, 南方科技大学化学系研究员, 长期致力于双亲性主族元素化学的前沿探索, 聚焦亲核/亲电双功能主族元素分子体系的设计合成与转化研究, 并用其模拟过渡金属的电子结构和化学行为, 系统拓展主族元素的基础化学认知边界. 曾在2011年与2016年先后获得厦门大学学士、博士学位, 期间曾在加州大学圣地亚哥分校进行博士研究生联合培养. 随后赴多伦多大学和加州大学伯克利分校开展博士后研究(2016-2020), 2020年9月加入南方科技大学组建独立研究团队. 2021年入选国家级海外青年人才计划; 获得中国化学会—英国皇家化学会青年化学奖、中国化学会黄耀曾金属有机化学青年奖、中国化学会青年化学奖、中国化学会青委会菁青化学新锐奖、日本化学会杰出讲座奖、广东省青年科技创新奖. 目前担任《Inorganic Chemistry Frontiers》、《化学学报》、《EurJIC》、《Chinese Chemical Letters》青年编委.

    “中国青年化学家”专辑.

  • 基金资助:
    国家自然科学基金(22350004)

Development and Outlook of Carbenes with Inverted Electronic Configuration (σ0π2)

Zhiqing Liu, Liu Leo Liu*()   

  1. Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
  • Received:2025-05-11 Published:2025-06-23
  • Contact: * E-mail: liuleoliu@sustech.edu.cn
  • About author:

    For the VSI “Rising Stars in Chemistry”.

  • Supported by:
    National Natural Science Foundation of China(22350004)

卡宾(R2C:)为一类中性二价碳物种, 其中心碳原子具有六电子结构特征, 在化学与材料科学等领域具有重要应用价值. 当前研究领域中, 已成功分离的稳定卡宾主要呈现σ2π0基态电子构型, 少量通过谱学表征的卡宾为σ1π1态; 而具有反转电子态(σ0π2)的稳定卡宾迄今仅一例报道. 该σ0π2卡宾具有一个刚性 RhP2C 四元金属杂环结构, 其中的卡宾碳原子在13C NMR中显示出低于-30的高场化学位移. 理论计算表明, 此类卡宾在小分子活化等过程中可能具有特殊反应活性. 本综述通过系统梳理该领域的研究进展, 重点分析其结构特征、稳定化策略及反应特性, 并展望其在惰性化学键活化、新型配体设计等方向的发展前景.

关键词: 卡宾, 反转电子态, 合成化学

Carbenes (R2C:) represent a unique class of neutral divalent carbon species that formally possess six valence electrons at the central carbon atom, thereby deviating from the octet rule. These species have long occupied a central role in organic, organometallic, and materials chemistry owing to their rich electronic structures and versatile reactivity. The vast majority of isolated stable carbenes adopt a singlet ground-state electronic configuration described as σ²π⁰, wherein a lone pair occupies an in-plane σ orbital and the out-of-plane π orbital remains unoccupied. This configuration underpins the pronounced nucleophilicity observed in classical N-heterocyclic carbenes and their analogs. A limited number of carbenes with a σ¹π¹ open-shell ground state have been spectroscopically characterized, often exhibiting radical-like behavior and enhanced reactivity. In sharp contrast, carbenes with an inverted electronic configuration—σ⁰π²—remain extraordinarily rare and conceptually intriguing. These carbenes possess two electrons fully occupying the out-of-plane π orbital, leaving the in-plane σ orbital vacant. Such a configuration inverts the typical orbital occupancy pattern, potentially leading to electrophilic or ambiphilic reactivity profiles. To date, four principal design strategies have been proposed to stabilize σ⁰π² carbenes: (1) cyclic di(imino)carbenes; (2) di(boryl)carbene; (3) metal-coordinated cyclic di(phosphino)carbenes; and (4) dicationic carbones. However, despite extensive conceptual exploration, only one stable and isolable σ⁰π² carbene has been structurally authenticated to date. This species features a rigid RhP2C four-membered metallacycle, wherein the carbene carbon exhibits an unprecedented 13C NMR chemical shift below -30 parts per million, representing the most upfield resonance recorded for a carbene center. This carbene demonstrates divergent reactivity patterns uncharacteristic of classical σ²π⁰ congeners. It reacts with both Lewis acids and Lewis bases to yield coordination adducts and π-complexes, respectively, and participates in bond-forming processes such as ketenimine generation from isocyanides. Its demonstrated ambiphilicity offers promise for the activation of inert small molecules, including dinitrogen (N2)—a long-standing goal in main group chemistry. This perspective provides a systematic overview of the emerging chemistry of σ⁰π² carbenes, critically analyzing structural parameters, stabilization frameworks, and reactivity paradigms. We further highlight the prospective roles of such carbenes in bond activation and novel ligand design, envisioning their integration into next-generation main-group and transition-metal cooperative systems.

Key words: carbene, inverted electronic configuration, synthetic chemistry