化学学报 ›› 2025, Vol. 83 ›› Issue (10): 1150-1156.DOI: 10.6023/A25040138 上一篇    下一篇

研究论文

呋喃基D-π-A型线性共轭聚合物的合成与光催化产氢性能研究

晋圣林a, 韩昌志a, 张崇a, 胡道道a,*(), 杨奔a,*(), 蒋加兴b,*()   

  1. a 陕西师范大学材料科学与工程学院 西安 710119
    b 江汉大学光电材料与技术学院 武汉 430056
  • 投稿日期:2025-04-28 发布日期:2025-08-12
  • 通讯作者: 胡道道, 杨奔, 蒋加兴
  • 基金资助:
    国家自然科学基金(22175110); 国家自然科学基金(22375076); 湖北省自然科学基金会(2024AFA031); 武汉市重点研发计划(2024010802030157); 陕西师范大学研究生自由探索项目(LHRCTS23103); 以及中央高校基本科研业务费项目(GK202501012)

Synthesis and Photocatalytic Hydrogen Production Performance of Furan based D-π-A type Linear Conjugated Polymer

Shenglin Jina, Changzhi Hana, Chong Zhanga, Daodao Hua,*(), Ben Yanga,*(), Jia-Xing Jiangb,*()   

  1. a School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119
    b College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056
  • Received:2025-04-28 Published:2025-08-12
  • Contact: Daodao Hu, Ben Yang, Jia-Xing Jiang
  • Supported by:
    National Natural Science Foundation of China(22175110); National Natural Science Foundation of China(22375076); Hubei Provincial Natural Science Foundation of China(2024AFA031); Key Research and Development Program of Wuhan(2024010802030157); Graduate Free Exploration Project of Shaanxi Normal University(LHRCTS23103); Fundamental Research Funds for the Central Universities(GK202501012)

有机共轭聚合物由于其多样化的合成方法、可调控的结构设计和丰富的单体构建单元, 被认为是一种极具发展潜力的光催化剂, 在光催化产氢领域受到了广泛的关注. 然而绝大多数有机共轭聚合物依然面临着带隙宽、共轭程度低和光生电荷分离弱等问题, 极大地限制了聚合物光催化剂产氢性能的提升. 供体-受体(D-A)和供体-π-受体(D-π-A)结构设计已经被证明是提高有机聚合物光催化析氢性能的有效策略, 这是因为电子给体(D)和电子受体(A)之间会产生强的电子“推-拉”效应, 促进了光生电荷的分离. 除了电荷分离能力, 电荷传输能力和可见光吸收能力也显著影响着聚合物的光催化析氢活性. 本文以富电子和高共轭度的芘为D型单元, 具有窄带隙的呋喃作为π桥, 具有强拉电子能力的二苯并噻吩砜为A型单元, 设计合成出两种分别具有D-A和D-π-A结构的线型共轭聚合物(LCPs). 与具有D-A结构的芘-二苯并噻吩砜聚合物(Py-BTDO)相比, 以呋喃作为π桥的D-π-A型芘-呋喃-二苯并噻吩砜聚合物(Py-F-BTDO)展现出强的可见光吸收能力和电荷传输能力. 因此, D-π-A型Py-F-BTDO表现出更高的光催化制氢活性, 在紫外-可见光照射下的产氢速率达到26.5 mmol•h-1•g-1, 约是D-A型Py-BTDO的4倍. 该工作证明在供受体间引入窄带隙呋喃(π桥)来构筑D-π-A结构是一种提高LCPs光催化活性的有效策略.

关键词: 呋喃, 线型有机共轭聚合物, 窄带隙, 光催化产氢, D-π-A结构设计

Organic conjugated polymers are considered a highly promising photocatalyst due to their diverse synthesis methods, controllable structural design, and abundant monomer building units, and have received widespread attention in the field of photocatalytic hydrogen production. However, the vast majority of organic conjugated polymers still face problems such as wide bandgap, low conjugation degree, and weak photogenerated charge separation, which greatly limit the improvement of hydrogen production performance of polymer photocatalysts. The design of donor acceptor (D-A) and donor π-acceptor (D-π-A) structures has been proven to be an effective strategy for improving the photocatalytic hydrogen evolution performance of organic polymers. This is because there is a strong electron “push-pull” effect between the electron donor (D) and the electron acceptor (A), which promotes the separation of photogenerated charges. In addition to charge separation ability, charge transport ability and visible light absorption ability also significantly affect the photocatalytic hydrogen evolution activity of polymers. Herein, two types of linear conjugated polymers (LCPs) with D-A and D-π-A structures are designed and synthesized using pyrene as the D-type unit, furan with narrow bandgap as the π bridge, and electron withdrawing dibenzothiophene sulfone as the A-type unit. Compared with pyrene dibenzothiophene sulfone polymer (Py-BTDO) with D-A structure, D-π-A-type pyrene furan dibenzothiophene sulfone polymer (Py-F-BTDO) with furan as the π bridge exhibits strong visible light absorption and charge transfer abilities. Therefore, D-π-A-type Py-F-BTDO exhibits higher photocatalytic hydrogen production activity, with a hydrogen production rate of 26.5 mmol•h-1•g-1 under UV visible light irradiation, approximately four times that of D-A type Py-BTDO. This work demonstrates that introducing narrow bandgap furan (π bridge) between the donor and acceptor to construct D-π-A structures is an effective strategy for enhancing the photocatalytic activity of LCPs.

Key words: furan, linear organic conjugated polymer, narrow bandgap, photocatalytic hydrogen production, D-π-A structural design