化学学报 ›› 2025, Vol. 83 ›› Issue (10): 1157-1165.DOI: 10.6023/A25070248 上一篇    下一篇

研究论文

基于新型近红外受体的高效半透明有机太阳能电池

李园圆a,, 杨云帆a,, 魏擎亚b, 徐翔c, 袁俊a, 王瑞松d, 邹应萍a,*()   

  1. a 中南大学化学化工学院 长沙 410083
    b 杭州电子科技大学 电子信息学院 浙江 杭州 310018
    c 宁德时代21C创新实验室 宁德 352102
    d 湖南兴湘投资控股集团有限公司 长沙 410029
  • 投稿日期:2025-07-05 发布日期:2025-08-28
  • 通讯作者: 邹应萍
  • 作者简介:

    † 共同第一作者

  • 基金资助:
    国家自然科学基金(52125306); 国家自然科学基金(U24A2081); 国家自然科学基金(22379167)

Highly Efficient Semi-transparent Organic Solar Cells based on a New Near-infrared Acceptor

Yuanyuan Lia, Yunfan Yanga, Qingya Weib, Xiang Xuc, Jun Yuana, Ruisong Wangd, Yingping Zoua,*()   

  1. a College of Chemistry and Chemical Engineering, Central South University, Changsha 410083
    b School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018
    c 21C LAB, Contemporary Amperex Technology Co., Limited, Ningde 352102, China
    d Hunan Xingxiang Investment Holding Group Co., Ltd, Changsha 410029
  • Received:2025-07-05 Published:2025-08-28
  • Contact: Yingping Zou
  • About author:

    † contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(52125306); National Natural Science Foundation of China(U24A2081); National Natural Science Foundation of China(22379167)

目前高性能有机太阳能电池给/受体材料吸收范围集中在可见光区域, 与半透明有机太阳能电池(ST-OSCs)对高可见光透过率(AVT)的需求存在冲突. 针对此问题, 本工作设计合成了一类新型近红外吸收受体材料W-4Cl, W-4Cl的最大吸收峰(λmax)位于892 nm, 吸收边带(λonset)位于990 nm. 基于此近红外吸收特性将其与给体PTB7-Th共混, 系统研究了该体系在不透明和半透明OSCs中的光伏性能. 以1-氯萘(CN)为添加剂, 通过调控其含量, 基于PTB7-Th:W-4Cl的不透明电池获得了14.10%的光电转化效率(PCE), 为目前PTB7-Th基不透明电池的最高PCE之一. 为提升ST-OSCs的光利用率(LUE), 采用稀释给体策略, 降低强可见光吸收的PTB7-Th含量, 以平衡ST-OSCs的PCE和AVT. 通过优化顶电极超薄Ag层和Cu电极种子层的厚度, 选用高折射率的材料三氧化钼(MoO3)作为覆盖层并优化其厚度, 最终获得了显色指数(CRI)为86.53, AVT为44.45%, LUE为3.81%的ST-OSCs, 满足建筑窗户和汽车天窗等多场景应用对兼具视觉舒适性与能量收集效率的需求.

关键词: 有机太阳能电池, 半透明, 近红外小分子受体, 光学调控

In this work, we designed and synthesized a new near-infrared (NIR) acceptor material W-4Cl featuring a narrow bandgap of 1.25 eV. W-4Cl exhibits a maximum absorption peak (λmax) at 892 nm and an absorption edge (λonset) at 990 nm, outperforming classical NIR acceptors (e.g., Y6: λmax 836 nm). Blending with the donor PTB7-Th, conventional organic solar cells (OSCs) and semi-transparent organic solar cells (ST-OSCs) were fabricated. By employing 1-chloronaphthalene (CN) as an additive and optimizing its content to 4% (φ), the OSCs based on PTB7-Th:W-4Cl obtained a power conversion efficiency (PCE) of 14.10%, with a high JSC of 26.59 mA• cm−2, VOC of 0.764 V, and FF of 68.44%, which is one of the highest reported values for PTB7-Th-based OSCs. In order to improve the light utilization efficiency (LUE) of ST-OSCs, the donor dilution strategy was adopted using a PTB7-Th:W-4Cl mass ratio of 1∶2, reducing the content of the strongly visible-absorbing PTB7-Th donor to balance PCE and average visible transmittance (AVT). Subsequently, the thickness of top electrode consisting of ultra-thin Ag layer and Cu seed layer was finely tuned to 3 nm Cu/8 nm Ag for optimal conductivity-transparency compromise. Besides, the MoO3 cover layer was employed with optimized film thickness of 35 nm. Consequently, the optimized ST-OSCs achieved a high color rendering index (CRI) of 86.53, an AVT of 44.45%, and an LUE of 3.81%. Charge dynamics analysis confirmed enhanced exciton dissociation (95.4%) and balanced carrier mobility (μh/μe=1.079) in optimized devices. This performance meets the requirements for applications such as building windows and automotive sunroofs, positioning the work among top-reported ST-OSCs in LUE-AVT-CRI synergy.

Key words: organic solar cells, semi-transparent, near-infrared small molecule acceptors, optical control