化学学报 ›› 2025, Vol. 83 ›› Issue (10): 1197-1207.DOI: 10.6023/A25050198 上一篇 下一篇
研究展望
投稿日期:2025-05-30
发布日期:2025-08-12
通讯作者:
王小野
作者简介:![]() |
高蓉蓉, 南开大学化学学院2022级在读博士生, 目前研究方向为有机光电探测器. |
![]() |
吕昊汉, 南开大学化学学院2023级在读硕士生. 2023年获得南开大学材料化学学士学位, 目前研究方向为有机光电材料与器件. |
![]() |
王小野, 现为南开大学化学学院及元素有机化学全国重点实验室特聘研究员, 独立课题组组长, 国家级青年人才, 2023年获得中国化学会青年化学奖、中国化学会菁青化学新锐奖、首届中国化学会朱道本有机固体青年创新奖及天津市青科协优秀青年科技工作者称号, 入选Sci. China Chem.及J. Mater. Chem. C新锐科学家. 近年围绕硼杂稠环共轭体系的精准构筑与光电功能应用开展研究工作, 已发表论文100余篇, 被引用7800余次. |
★ “中国青年化学家”专辑.
基金资助:
Rong-Rong Gao, Hao-Han Lv, Xiao-Ye Wang*(
)
Received:2025-05-30
Published:2025-08-12
Contact:
Xiao-Ye Wang
About author:★ For the VSI “Rising Stars in Chemistry”.
Supported by:文章分享
窄谱带有机光电探测器因其高光谱分辨率和广阔应用前景成为光电子领域的研究热点. 传统依赖分光元件或器件工程策略的窄谱带光电探测器面临集成度低、成本高昂等问题. 有机光电材料通过分子结构设计可实现光谱响应的精确调控, 在构筑窄谱带光电探测器中展现出巨大潜力. 本工作聚焦于窄谱吸收材料的有机光电探测器, 从分子设计和聚集态调控两个角度剖析不同材料体系窄谱吸收机制, 并探讨其在探测器中的应用, 最后对该领域未来发展的机遇和挑战进行展望.
高蓉蓉, 吕昊汉, 王小野. 基于窄谱吸收材料的有机光电探测器★[J]. 化学学报, 2025, 83(10): 1197-1207.
Rong-Rong Gao, Hao-Han Lv, Xiao-Ye Wang. Organic Photodetectors Based on Narrowband Absorption Materials★[J]. Acta Chimica Sinica, 2025, 83(10): 1197-1207.
| Metric | Equation | Unit | Defination |
|---|---|---|---|
| Responsivity (R) | R=Iph/Plight Iph: Generated photocurrent, Plight: Incident optical power | A•W-1 | The ratio of the photogenerated current of the PDs to the incident light power intensity |
| External Quantum Efficiency (EQE) | EQE=R×(ℎc/qλ)≈R×1240/λ h: Planck’s constant, c: the speed of light, q: the elementary charge, λ: the incident light wavelength | — | The ratio of the number of collected charges to the number of incident photons per unit time |
| Noise-equivalent power (NEP) | NEP=(IN/B1/2)/R IN: Noise current, B: electrical bandwidth | W•Hz-1/2 | NEP is defined as the minimal detectable light power of photodetectors |
| Specific Detectivity (D*) | D*=A1/2/NEP=R(AB)1/2/IN A: device area | cm•Hz1/2•W-1 (Jones) | Normalize NEP to device area and electrical bandwidth of noise measurement |
| Linear dynamic range (LDR) | LDR=20×log(Imax/Imin) Imax and Imin are the corresponding maximum and minimum photocurrent limits | dB | The light intensity range with a linear relationship between the photocurrent and the incident light intensity |
| −3 dB bandwidth (ƒ−3dB) | ƒ2-3Db=(3.5/2πttr)2+(1/2πRC)2 ttr:carrier transit time, RC: RC‑time of the circuit | Hz | Modulation frequency at which the responsivity of the device is half of that at steady state conditions |
| Spectral rejection ratio (SRR) | SRR(λtarget, λref)=R(λtarget)/R(λref) λtarget is the light wavelength within the target detection spectral range, λref is the light wavelength outside the target detection spectral range. | — | The contrast between the response in target spectral range and outside target spectral range |
| Full width at half-maximum (FWHM) | — | nm | Full width at half-maximum of absorption or photoresponse spectra |
| Metric | Equation | Unit | Defination |
|---|---|---|---|
| Responsivity (R) | R=Iph/Plight Iph: Generated photocurrent, Plight: Incident optical power | A•W-1 | The ratio of the photogenerated current of the PDs to the incident light power intensity |
| External Quantum Efficiency (EQE) | EQE=R×(ℎc/qλ)≈R×1240/λ h: Planck’s constant, c: the speed of light, q: the elementary charge, λ: the incident light wavelength | — | The ratio of the number of collected charges to the number of incident photons per unit time |
| Noise-equivalent power (NEP) | NEP=(IN/B1/2)/R IN: Noise current, B: electrical bandwidth | W•Hz-1/2 | NEP is defined as the minimal detectable light power of photodetectors |
| Specific Detectivity (D*) | D*=A1/2/NEP=R(AB)1/2/IN A: device area | cm•Hz1/2•W-1 (Jones) | Normalize NEP to device area and electrical bandwidth of noise measurement |
| Linear dynamic range (LDR) | LDR=20×log(Imax/Imin) Imax and Imin are the corresponding maximum and minimum photocurrent limits | dB | The light intensity range with a linear relationship between the photocurrent and the incident light intensity |
| −3 dB bandwidth (ƒ−3dB) | ƒ2-3Db=(3.5/2πttr)2+(1/2πRC)2 ttr:carrier transit time, RC: RC‑time of the circuit | Hz | Modulation frequency at which the responsivity of the device is half of that at steady state conditions |
| Spectral rejection ratio (SRR) | SRR(λtarget, λref)=R(λtarget)/R(λref) λtarget is the light wavelength within the target detection spectral range, λref is the light wavelength outside the target detection spectral range. | — | The contrast between the response in target spectral range and outside target spectral range |
| Full width at half-maximum (FWHM) | — | nm | Full width at half-maximum of absorption or photoresponse spectra |
| Photoactive materials | λsolution/nm | FWHMsolution/nm | λdevice/nm | FWHMdevice/nm | R/(A•W-1) | EQE/% | D*/Jones | LDR/dB | ƒ3dB/kHz | Bias/V | SRR | Ref. | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F8BT | 448 (film) | 85 (film) | 465 | 0.12 | — | [ | |||||||
| PFO:R6G | 560 (film) | 94 (film) | 554 | — | — | 0.01 | — | — | — | — | — | [ | |
| PFO:Ni(t-Bu)4Pc | 609 (film) | 68 (film) | 610 | 70 | — | 0.001 | — | — | — | — | — | [ | |
| SiNc-C6 | 770 | <50 | 795 | 80 | 0.491 | 76.6 | 5.66 ×1012 | 112 | 94.2 | -3 | — | [ | |
| DMQA/SubPc | — | — | 560 | 80 | 131 | 0.27 | 60.1 | 2.34×1012 | — | — | -5 | — | [ |
| DM-2,9-DMQA/SubPc | 546 | 60 | 580 | 115 | 0.264 | 76.6 | 56.5 | 2.03×1012 | — | — | -3 | — | [ |
| Rubrene/C60 | — | — | 470 | 80 | 0.21 | 55 | — | — | 950 | -1 | — | [ | |
| PP-TPD | 552 | 138 | 550 | 148 | 0.11 | 24 | 1.04×1012 | 160 | 42.8 | -3 | — | [ | |
| F8T2 | — | — | 450 | 110 | 0.016 | <5 | 1.15×1012 | 125 | 10.6 | -5 | — | [ | |
| PP-Th | 503 | — | 510 | 118 | — | 13 | 1.42×1012 | 84.9 | 3.1 | — | — | [ | |
| PNa6-Th:PCBM | 420 | ≈100 | 420 | 103 | 0.128 | 37.8 | 2.31×1012 | 142 | 9.1 | -1 | — | [ | |
| PCZ-Th-DPP | 670 | 181 | 700 | 148 | — | — | 4.63×1012 | 109 | 1.23 | -1 | — | [ | |
| PSBOTz:PNDBO | 536 | >100 | 530 | 153 | 0.07 | 16.4 | 1.1×1013 | — | — | -2 | — | [ | |
| PolyTPD:SBDTIC | 695 | — | 740 | 141 | 0.06 | 10.5 | 1.42×1013 | 77.9 | 118.3 | 0 | — | [ | |
| SubPc:C60 | ≈580 | 50 | 40.6 | ≈8×1011 | — | — | -2 | 120 | [ | ||||
| SubPc | 571 | 137.71 | 0.14 | 31.91 | 2.40×1012 | — | — | 0 | — | [ | |||
| NPy-Te-BABS:C60 | 525 | 25 | 535 | 92 | 0.285 | 66 | 9.36×1012 | 98 | — | -3 | — | [ | |
| NPh-Te-BABS:C60 | 535 | 45 | 540 | 114 | 0.2 | 50 | 4.12×1011 | — | -3 | — | [ | ||
| BDP-OMe | — | — | 770 | 96 | — | 49.3 | 1.0×1013 | — | 1050 | 0 | 8.3 | [ | |
| DIBSQ:SBDTIC | — | — | 676 | 85 | 0.083 | — | 5.06×1012 | 74.32 | 11.56 | -2 | 5.29 | [ | |
| M4 | 545 | 48 | 550 | 97 | 0.21 | 48.6 | 3.73×1013 | — | — | -3 | — | [ | |
| ISQ | — | — | 680 | 80 | 0.285 | 15 | 3.2×1012 | 114 | 190 | -2 | — | [ | |
| Ketocyanine:PC60BM | 504 | 69 | 510 | 130 | 0.03 | 3.5 | — | — | — | -1 | — | [ | |
| KetocyanineBr | 515 | 71 | 525 | 80 | 0.06 | 15 | 1.00×1011 | 80 | 25 | -1 | — | [ | |
| CY7-T | — | — | 850 | 130 | 0.165 | 23 | 1.0×1012 | — | — | -2 | — | [ | |
| PSQ | 550 | 135 | 600 | 110 | 0.32 | 66 | 7.7×1012 | 48 | — | -2.5 | — | [ | |
| Cyanine 1:C60 | 548 | — | 560 | 97 | 0.32 | 15 | 70 | 4.37×1013 | — | — | 3 | — | [ |
| Cyanine 2:C60 | 524 | — | 540 | 102 | 46.7 | — | — | — | 3 | — | [ | ||
| UPSQ | 500 | 99 | 500 | 90 | 0.06 | 16 | 3×1011 | >50 | — | -3 | — | [ |
| Photoactive materials | λsolution/nm | FWHMsolution/nm | λdevice/nm | FWHMdevice/nm | R/(A•W-1) | EQE/% | D*/Jones | LDR/dB | ƒ3dB/kHz | Bias/V | SRR | Ref. | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F8BT | 448 (film) | 85 (film) | 465 | 0.12 | — | [ | |||||||
| PFO:R6G | 560 (film) | 94 (film) | 554 | — | — | 0.01 | — | — | — | — | — | [ | |
| PFO:Ni(t-Bu)4Pc | 609 (film) | 68 (film) | 610 | 70 | — | 0.001 | — | — | — | — | — | [ | |
| SiNc-C6 | 770 | <50 | 795 | 80 | 0.491 | 76.6 | 5.66 ×1012 | 112 | 94.2 | -3 | — | [ | |
| DMQA/SubPc | — | — | 560 | 80 | 131 | 0.27 | 60.1 | 2.34×1012 | — | — | -5 | — | [ |
| DM-2,9-DMQA/SubPc | 546 | 60 | 580 | 115 | 0.264 | 76.6 | 56.5 | 2.03×1012 | — | — | -3 | — | [ |
| Rubrene/C60 | — | — | 470 | 80 | 0.21 | 55 | — | — | 950 | -1 | — | [ | |
| PP-TPD | 552 | 138 | 550 | 148 | 0.11 | 24 | 1.04×1012 | 160 | 42.8 | -3 | — | [ | |
| F8T2 | — | — | 450 | 110 | 0.016 | <5 | 1.15×1012 | 125 | 10.6 | -5 | — | [ | |
| PP-Th | 503 | — | 510 | 118 | — | 13 | 1.42×1012 | 84.9 | 3.1 | — | — | [ | |
| PNa6-Th:PCBM | 420 | ≈100 | 420 | 103 | 0.128 | 37.8 | 2.31×1012 | 142 | 9.1 | -1 | — | [ | |
| PCZ-Th-DPP | 670 | 181 | 700 | 148 | — | — | 4.63×1012 | 109 | 1.23 | -1 | — | [ | |
| PSBOTz:PNDBO | 536 | >100 | 530 | 153 | 0.07 | 16.4 | 1.1×1013 | — | — | -2 | — | [ | |
| PolyTPD:SBDTIC | 695 | — | 740 | 141 | 0.06 | 10.5 | 1.42×1013 | 77.9 | 118.3 | 0 | — | [ | |
| SubPc:C60 | ≈580 | 50 | 40.6 | ≈8×1011 | — | — | -2 | 120 | [ | ||||
| SubPc | 571 | 137.71 | 0.14 | 31.91 | 2.40×1012 | — | — | 0 | — | [ | |||
| NPy-Te-BABS:C60 | 525 | 25 | 535 | 92 | 0.285 | 66 | 9.36×1012 | 98 | — | -3 | — | [ | |
| NPh-Te-BABS:C60 | 535 | 45 | 540 | 114 | 0.2 | 50 | 4.12×1011 | — | -3 | — | [ | ||
| BDP-OMe | — | — | 770 | 96 | — | 49.3 | 1.0×1013 | — | 1050 | 0 | 8.3 | [ | |
| DIBSQ:SBDTIC | — | — | 676 | 85 | 0.083 | — | 5.06×1012 | 74.32 | 11.56 | -2 | 5.29 | [ | |
| M4 | 545 | 48 | 550 | 97 | 0.21 | 48.6 | 3.73×1013 | — | — | -3 | — | [ | |
| ISQ | — | — | 680 | 80 | 0.285 | 15 | 3.2×1012 | 114 | 190 | -2 | — | [ | |
| Ketocyanine:PC60BM | 504 | 69 | 510 | 130 | 0.03 | 3.5 | — | — | — | -1 | — | [ | |
| KetocyanineBr | 515 | 71 | 525 | 80 | 0.06 | 15 | 1.00×1011 | 80 | 25 | -1 | — | [ | |
| CY7-T | — | — | 850 | 130 | 0.165 | 23 | 1.0×1012 | — | — | -2 | — | [ | |
| PSQ | 550 | 135 | 600 | 110 | 0.32 | 66 | 7.7×1012 | 48 | — | -2.5 | — | [ | |
| Cyanine 1:C60 | 548 | — | 560 | 97 | 0.32 | 15 | 70 | 4.37×1013 | — | — | 3 | — | [ |
| Cyanine 2:C60 | 524 | — | 540 | 102 | 46.7 | — | — | — | 3 | — | [ | ||
| UPSQ | 500 | 99 | 500 | 90 | 0.06 | 16 | 3×1011 | >50 | — | -3 | — | [ |
| [21] |
doi: 10.1038/srep09439 pmid: 25803320 |
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [1] |
García de Arquer, F. P.; Armin, A.; Meredith, P.; Sargent, E. H. Nat. Rev. Mater. 2017, 2, 16100.
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
|
(王健, 赵子进, 杨凯旋, 陈亮, 刘明, 张福俊, 高分子学报, 2022, 53, 331.)
|
|
| [14] |
|
| [15] |
|
| [16] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [44] |
|
| [45] |
|
|
(张祎, 杜呈卓, 李继坤, 王小野, 有机化学, 2023, 43, 1645.)
doi: 10.6023/cjoc202212037 |
|
| [46] |
|
|
(王一诺, 邵世洋, 王利祥, 化学学报, 2023, 81, 1202.)
doi: 10.6023/A23040186 |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
doi: 10.1039/c9tc04773e |
| [59] |
|
| [1] | 王一诺, 邵世洋, 王利祥. 窄谱带多重共振有机高分子荧光材料研究进展★[J]. 化学学报, 2023, 81(9): 1202-1214. |
| [2] | 王成, 张弛, 陈琪, 陈立桅. 倍增型窄带响应有机光电探测器的界面调控[J]. 化学学报, 2021, 79(8): 1030-1036. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||