化学学报 上一篇    下一篇

研究展望

金属-有机框架材料在低浓度CO2电催化转化中的应用与展望

黄大帅, 廖培钦*   

  1. 中山大学化学学院 生物无机与合成化学教育部重点实验室 广州 510275
  • 投稿日期:2026-01-05
  • 作者简介:黄大帅,中山大学博士后。2021年于西北大学获得学士学位,2025年于中山大学获得博士学位,导师陈小明教授和廖培钦教授。目前研究方向为金属-有机框架材料的设计合成,及其在电催化领域的应用。廖培钦,中山大学化学学院教授,博士生导师。2011年于中山大学获得学士学位,2016年于中山大学获得博士学位,导师陈小明教授。目前的研究方向包括新型多孔材料的设计与合成,以及其在小分子催化转化中的应用。
  • 基金资助:
    国家重点研发计划(No. 2024YFF0506100),国家自然科学基金(No. 22371304和224B2117),中山大学高校基本科研业务费(No. 24lgzy006)和广州科技计划(No. SL2023A04J01767)资助.

Applications and Perspectives of Metal-Organic Framework Materials in Electrocatalytic Conversion of Low-Concentration CO2

Huang Da-Shuai, Liao Pei-Qin*   

  1. MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275
  • Received:2026-01-05
  • Contact: *E-mail: liaopq3@mail.sysu.edu.cn
  • Supported by:
    Project supported by the National Key Research and Development Program of China (No. 2024YFF0506100), National Natural Science Foundation of China (No. 22371304 and No. 224B2117), Fundamental Research Funds for the Central Universities, Sun Yat-Sen University (No. 24lgzy006) and the Guangzhou Science and Technology Program (No. SL2023A04J01767).

低浓度二氧化碳(烟气中15%、空气中400 ppm级)的高效捕集与电催化转化是实现碳减排与资源化利用的重要技术路径。然而,受限于CO2传质不足、杂质气体引发的竞争反应以及产物分离成本高等因素,传统电催化体系在低浓度条件下面临显著性能衰减的问题。金属-有机框架(MOF)材料凭借其可设计的多孔结构、可调控的化学环境以及高度集成化的功能潜力,为突破上述瓶颈提供了独特的平台。本文围绕MOF基材料在低浓度CO2电催化转化中的应用进展,系统梳理并总结了几类代表性的设计策略:从单一MOF内部实现CO2捕集-催化双功能集成,到MOF基分子筛膜-电解池的器件级耦合,实现烟气或空气源CO2的原位富集、纯化与高选择性转化。相关研究揭示了低浓度CO2电催化转化从分子尺度活性位点调控,到反应环境优化,再到器件级系统集成的递进式创新思路。最后,结合当前研究现状,对该领域在催化机理、耐杂质体系构建等方面面临的挑战与发展机遇进行了展望。

关键词: 金属-有机框架, 低浓度二氧化碳, 电催化二氧化碳还原, 捕集-转化一体化

Efficient capture and electrocatalytic conversion of low-concentration carbon dioxide (15% in flue gas and ~400 ppm in ambient air) represents a promising pathway toward carbon emission mitigation and value-added chemical production. In principle, directly utilizing dilute CO2 streams could bypass energy-intensive purification steps and improve the overall process economics. However, electrocatalytic CO2 reduction (eCO2RR) under low CO2 partial pressures is fundamentally limited by sluggish CO2 mass transfer, severe competition from the hydrogen evolution reaction, and performance deterioration induced by impurities (e.g., O2, NOx, and SO2). Moreover, conventional neutral/alkaline electrolytes suffer from pronounced carbonate formation, leading to substantial carbon losses and low single-pass carbon efficiency. These challenges indicate that simply improving intrinsic catalytic activity is insufficient; instead, new materials and system-level strategies are required to simultaneously enrich CO2, regulate interfacial microenvironments, and decouple separation from conversion. Metal-organic frameworks (MOF), featuring tailorable pore architectures, designable pore chemistry, and the capability of integrating multiple functions into a single material or device component, provide a unique platform to address the above limitations. This Perspective highlights recent advances in MOF-based materials for eCO2RR using low-concentration CO2 feedstocks, with an emphasis on representative design paradigms spanning “molecular-scale synergy - reaction-environment regulation - device-level integration”. First, capture and conversion can be coupled within individual MOFs by embedding CO2-philic motifs and catalytic centers into the same porous scaffold, enabling preferential CO2 enrichment, and facilitated transport to active sites under simulated flue gas. Second, reaction-environment engineering, particularly under acidic conditions, offers a viable solution to suppress carbonate formation and enhance carbon utilization; protonation of N-rich frameworks can strengthen CO2 adsorption/transport while limiting proton accessibility to catalytic sites, leading to high Faradaic efficiency and improved single-pass conversion even with dilute CO2 inputs. Third, device-level strategies further decouple CO2 purification from downstream electrolysis by integrating MOF-based molecular sieving mixed-matrix membranes (e.g., MOF/PIM-1 composites) into membrane electrode assemblies, allowing in situ enrichment of flue gas- or air-derived CO2 and impurity removal prior to catalytic conversion. Collectively, these advances demonstrate how MOFs can enable progressive innovations from materials design to interfacial regulation and electrolyzer integration. Finally, key challenges and opportunities are discussed, including mechanistic understanding under complex impurity mixtures, long-term stability, scalable manufacturing of MOF-based layers and membranes, and compatibility with industrial capture and electrolysis infrastructures.

Key words: metal-organic framework, low concentration CO2, electrocatalytic CO2 reduction, enrichment-conversion integration