研究论文

高效近红外聚集诱导发光纳米粒子用于生物成像的研究

  • 纪光 ,
  • 闫路林 ,
  • 王慧 ,
  • 马莲 ,
  • 徐斌 ,
  • 田文晶
展开
  • 吉林大学 化学学院超分子结构与材料国家重点实验室 长春 130012

收稿日期: 2016-08-24

  网络出版日期: 2016-11-24

基金资助

项目受973计划(No.2013CB834701)、国家自然科学基金(Nos.51373063,51573068,21221063)、长江学者和创新研究团队(No.IRT101713018)资助.

Efficient Near-infrared AIE Nanoparticles for Cell Imaging

  • Ji Guang ,
  • Yan Lulin ,
  • Wang Hui ,
  • Ma Lian ,
  • Xu Bin ,
  • Tian Wenjing
Expand
  • State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012

Received date: 2016-08-24

  Online published: 2016-11-24

Supported by

Project supported by 973 Program (No. 2013CB834701), the Natural Science Foundation of China (Nos. 51373063, 51573068, 21221063) and Program for Chang Jiang Scholars and Innovative Research Team in University (No. IRT101713018).

摘要

基于荧光共振能量转移机理(FRET),利用两亲性聚合物Pluronic F-127共包覆两种聚集诱导发光(Aggregation-induced Emission,AIE)材料TPABDFN和TPE-Me,制备了高效近红外发射TPABDFN/TPE-Me@F127纳米粒子.实验表明,这种聚合物纳米粒子具有很大的斯托克斯位移和较高的荧光量子效率,很好的单分散性、稳定性,以及较好的生物相容性和低的细胞毒性,对HepG2细胞进行荧光生物成像,得到很好的细胞成像效果.

本文引用格式

纪光 , 闫路林 , 王慧 , 马莲 , 徐斌 , 田文晶 . 高效近红外聚集诱导发光纳米粒子用于生物成像的研究[J]. 化学学报, 2016 , 74(11) : 917 -922 . DOI: 10.6023/A16080430

Abstract

Near-infrared fluorescence signals are highly desirable to acheieve high resolution in biological imaging. We encapsulated hydrophobic AIE (aggregation-induced emission) fluorophores into the biocompatible Pluronic F-127 NPs for cellular imaging and efficiently enhance the near-infrared AIE fluorophore emission. AIE molecule 2-(4-bromophenyl)-3-(4-(4-(diphenylamino)styryl)phenyl) fumaronitrile (TPABDFN) with near-infrared emission was synthesized and selected as the fluorescence resonance energy transfer (FRET) acceptor. (2-p-tolylethene-1,1,2-triyl)tribenzene (TPE-Me) was a blue-emitting AIE molecule, which spectrum was matching with TPABDFN. TPE-Me@F127 NPs emission was 480 nm, TPABDFN@F127 NPs maximum absorption wavelength was also 480 nm, that the absorption had a large area of overlapping with the TPE-Me@F127 NPs emission spectrum and leaded to efficient energy transfer, so TPE-Me was selected as the FRET donor. By encapsulating both TPE-Me donor and TPABDFN acceptor simultaneously within the NPs, a significant FRET effect was induced. FRET pairs of different ratios was co-encapsulated into the F127 NPs to optimize the fluorescence signals. The maximum of fluorescence quantum yield was 19.9%, energy transfer efficiency was 43.5%. TPABDFN@F127 NPs only had weak fluorescence, but the TPABDFN/TPE-Me@F127 NPs showed bright fluorescence signal. Fluorescence resonance energy transfer contributed to the notable increase of acceptor emission The fluorescence quantum yield had 10-fold enhancement of the TPABDFN. In addition, the obtained TPABDFN/TPE-Me@F127 NPs showed a large Stokes shift of 265 nm, which can be used to avoid the interference between excitation and emission light, as well as the near-infrared emission spectrum away from the organism auto-fluorescence, which was beneficial for the bio-application. Fluorescent probe emission in the far red/near-infrared (FR/NIR) (650~900 nm) region for biological detection also can greatly reduce the damage to living body. And TPABDFN/TPE-Me@F127 NPs had low cytotoxicity, good biocompatibility, stability and anti-photobleaching. The TPABDFN/TPE-Me@F127 NPs achieved good imaging result on HepG2 cell cytoplasm.

参考文献

[1] Luo, S.; Zhang, E.; Su, Y. Biomaterials 2011, 32, 7127.
[2] Frangioni, J. V. Curr. Opin. Chem. Biol. 2003, 7, 626.
[3] Liu, J.; Geng, J.; Liu, B. Chem. Commun. 2013, 49, 1491.
[4] Ghoroghchian, P. P.; Frail, P. R.; Susumu, K. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 2922.
[5] Geng, J.; Li, K.; Pu, K. Y. Small 2012, 8, 2421.
[6] He, X.; Wang, K.; Cheng, Z. WIRES Nanomed Nano 2010, 2, 349.
[7] Lu, H. G.; Xu, B.; Tian, W. J. Angew. Chem. Int. Ed. 2016, 55, 155.
[8] Zhang, Y.; Wu, C. F.; Tian, W. J. RSC Adv. 2015, 5, 36837.
[9] Gao, G. B.; Gong, D. J.; Zhang, M. X. Acta Chim. Sinica 2016, 74, 363. (高冠斌, 龚德君, 张明曦, 孙涛垒, 化学学报, 2016, 74, 363.)
[10] Zrazhevskiy, P.; Sena, M.; Gao, X. Chem. Soc. Rev. 2010, 39, 4326.
[11] Gao, J.; Chen, K.; Luong, R. Nano Lett. 2011, 12, 281.
[12] Michalet, X.; Pinaud, F.; Bentolila, L. Science 2005, 307, 538.
[13] Cui, X. T.; Lv, Y. Y.; Liu, Y. Acta Chim. Sinica 2014, 72, 75. (崔晓腾, 吕玉洋, 刘颖, 吴伯岳, 化学学报, 2014, 72, 75.)
[14] Santra, S.; Zhang, P.; Wang, K. Anal. Chem. 2001, 73, 4988.
[15] Wu, X.; Chang, S.; Sun, X. Chem. Sci. 2013, 4, 1221.
[16] Shi, C.; Guo, Z.; Yan, Y. ACS Appl. Mater. Interfaces 2012, 5, 192.
[17] Gao, X.; Yang, L.; Petros, J. A. Curr. Opin. Chem. Biol. 2005, 16, 63.
[18] Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S. Nat. Methods 2008, 5, 763.
[19] Smith, A.; Duan, H.; Mohs, A. Adv. Drug Deliver. Rev. 2008, 60, 1226.
[20] Jamieson, T.; Bakhshi, R.; Petrova, D. Biomaterials 2007, 28, 4717.
[21] Wang, L.; Tan, W. Nano Lett. 2006, 6, 84.
[22] Schadlich, A.; Caysa, H.; Mueller, T. ACS Nano 2011, 5, 8710.
[23] Lee, C. H. Cheng, S. H.; Wang, Y. J. Adv. Funct. Mater. 2009, 19, 215.
[24] Alt?no?lu, E.; Adair, J. H WIRES Nanomed. Nanobi. 2010, 2, 461.
[25] Yan, L. L.; Xu, B.; Tian, W. J. Nanoscale 2016, 8, 2471.
[26] Thomas, S.; Joly, G.; Swager, T. Chem. Rev. 2007, 107, 1339.
[27] Brasseur, N.; Nguyen, T.; Langlois, R. J. Med. Chem. 1994, 37, 415.
[28] Mei, J.; Leung, N.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
[29] Luo, J.; Xie, Z.; Lam, J. W. Chem. Commun. 2001, 18, 1740.
[30] Hong, Y.; Lam, J. W.; Tang, B. Z. Chem. Commun. 2009, 29, 4332.
[31] Wang, M.; Zhang, D.; Zhang, G. Chem. Commun. 2008, 37, 4469.
[32] Hong, Y.; Lam, J.; Tang, B. Z. Chem. Soc. Rev. 2011, 40. 5361.
[33] Wang, M.; Zhang, G.; Zhang, D. J. Mater. Chem. 2010, 20, 1858.
[34] Chen J. L.; Xu, B.; Tian, W. J. ACS Photonics 2015, 2, 313.
[35] Zhang, Y.; Xu, B.; Tian, W. J. Polym. Chem. 2014, 5, 3824.
[36] Qi, Q. K.; Xu, B.; Tian, W. J. Adv. Funct. Mater. 2015, 25, 4005.
[37] Zhang, J. B.; Xu, B.; Tian, W. J. Adv. Mater. 2014, 26, 739.
[38] Zhang, J. B.; Xu, B.; Tian, W. J. Chem. Commun. 2013, 49, 3878.
[39] Zhao, Z.; Geng, J.; Chang, Z. J. Mater. Chem. 2012, 22, 11018.
[40] Qin, W.; Ding, D.; Liu, J. Adv. Funct. Mater. 2012, 22, 771.
[41] Geng, J.; Li, K.; Ding, D. Small 2012, 8, 3655.
[42] Geng, J.; Li, K.; Qin, W. Small 2013, 9, 2012.
[43] Shi, H.; Liu, J.; Geng, J. J. Am. Chem. Soc. 2012, 134, 9569.
[44] Wang, M.; Gu, X.; Zhang, G. Anal. Chem. 2009, 81, 4444.
[45] Liu, L.; Zhang, G.; Xiang, J. Org. Lett. 2008, 10, 4581.
[46] Li, X.; Xu, B.; Tian, W. J. Anal. Chem. 2014, 86, 298.
[47] Ma, K.; Xu, B.; Tian, W. J. Anal. Bioanal. Chem. 2015, 407, 2625.
[48] Qian, J.; Zhu, Z. F.; Qin, A. J. Adv. Mater. 2015, 27, 2332.
[49] Wang, Y. L.; Hu, R. R.; Xu, W. Biomed. Opt. Express. 2015, 6, 3783.
[50] Jin, Y.; Ye, F.; Zeigler, M. ACS Nano 2011, 5, 1468.
[51] Chung, C. Y.-S.; Yam, V. W.-W. Chem. Sci. 2013, 4, 377.
[52] Xu, Y.; Zhang, H.; Li, F. J. Mater. Chem. 2012, 22, 1592.

文章导航

/