金属-有机骨架材料在色谱分离中的应用
收稿日期: 2016-09-08
网络出版日期: 2016-12-05
基金资助
项目受国家自然科学基金(21322601和21271015)和研究生科技基金(005000514116501)资助.
Application of Metal-Organic Frameworks in Chromatographic Separation
Received date: 2016-09-08
Online published: 2016-12-05
Supported by
Project supported by the Natural Science Foundation of China (21322601 and 21271015), and Graduate Student Science Foundation (005000514116501).
李晓新 , 束伦 , 陈莎 . 金属-有机骨架材料在色谱分离中的应用[J]. 化学学报, 2016 , 74(12) : 969 -979 . DOI: 10.6023/A16090482
Metal-organic frameworks (MOFs) are synthesized via the self-assembling combination of organic ligands and inorganic metals or metal-oxo units (secondary building units,SBUs) using strong bonds to form a porous open crystalline.Because of their outstanding thermal stability,chemical stability and designability,MOFs are successfully applied in various fields,such as gas absorption,separation,purification,catalysis,as well as templates for various functional materials.MOFs are also used as column materials for gas or liquid chromatography separation.In this paper,the studies about MOFs used as stationary phases in gas chromatography and high-performance liquid chromatography were reviewed according to the separated various analytes.We summarized the separation effects of different MOFs for different substances,especially focusing on the separation mechanism of MOFs.The key influence factors on the chromatographic separation,such as pore diameter,functional groups and unsaturated metal sites of MOFs,were expounded.Then,the challenges of MOFs as stationary phases in gas and high-performance liquid chromatography were discussed,which include the mechanism,chiral separation,the limited MOFs in chromatographic separation.The future research in this field should focus on defining separation mechanism,improving their stability and synthesizing the MOFs with special function.
[1] Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 974.
[2] Férey, G. From Zeolites to Porous MOF Materials:the 40th Anniversary of International Zeolite Conference, Proceedings of the 15th in International Zeolite Conference, Eds.:Xu, R.; Gao, Z.; Chen, J., Elsevier, Beijing, 2007, pp. 66~84.
[3] Férey, G. Chem. Soc. Rev. 2008, 37, 191.
[4] Yusuf, K.; Aqel, A.; Alothman, Z. J. Chromatogr. A 2014, 1348, 1.
[5] Sabouni, R.; Kazemian, H.; Rohani, S. Environ. Sci. Pollut. Res. 2014, 21, 5427.
[6] Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127.
[7] Li, J.; Sculley, J.; Zhou, H. Chem. Rev. 2012, 112, 869.
[8] Van de Voorde, B.; Bueken, B.; Denayer, J.; De Vos, D. Chem. Soc. Rev. 2014, 43, 5766.
[9] Czaja, A. U.; Trukhan, N.; Mueller, U. Chem. Soc. Rev. 200938, 1284.
[10] Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113. (黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)
[11] Hong, D.; Hwang, Y. K.; Serre, C.; Ferey, G.; Chang, J. S. Adv. Funct. Mater. 2009, 19, 1537.
[12] Li, Y. X.; Zhang, W.; Liu, Z.; Xie, Z. G. Acta Chim. Sinica 2015, 73, 641. (李阳雪, 张巍, 刘智, 谢志刚, 化学学报, 2015, 73, 641.)
[13] Yin, J.; Yang, G.; Wang, H.; Chen, Y. Chem. Commun. 2007, 4614.
[14] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
[15] Holcroft, J. M.; Hartlieb, K. J.; Moghadam, P. Z.; Bell, J. G.; Barin, G.; Ferris, D. P.; Bloch, E. D.; Algaradah, M. M.; Nassar, M. S.; Botros, Y. Y.; Thomas, K. M.; Long, J. R.; Snurr, R. Q.; Stoddart, J. F. J. Am. Chem. Soc. 2015, 137, 5706.
[16] Gu, Z.; Yang, C.; Chang, N.; Yan, X. Acc. Chem. Res. 2012, 45, 734.
[17] Yu, Y.; Ren, Y.; Shen, W.; Deng, H.; Gao, Z. TrAC 2013, 50, 33.
[18] Yusuf, K.; Aqel, A.; Alothman, Z. J. Chromatogr. A 2014, 1348, 1.
[19] Yuan, Z. Z.; Luo, F.; Liu, J. L.; Luo, M. B.; Li, F. Q. Chem. Res. Appl. 2013, 25, 614. (袁自遵, 罗峰, 刘建亮, 罗明标, 李芳清, 化学研究与应用, 2013, 25, 614.)
[20] Liu, P.; Tang, L. X.; Lian, Y. H.; Li, Z.; Sun, C. Y.; Chen, G. J. Acta Chim. Sinica 2013, 71, 920. (刘蓓, 唐李兴, 廉源会, 李智, 孙长宇, 陈光进, 化学学报, 2013, 71, 920.)
[21] Chang, N.; Gu, Z.; Wang, H.; Yan, X. Anal. Chem. 2011, 83, 7094.
[22] Luebbers, M. T.; Wu, T.; Shen, L.; Masel, R. I. Langmuir 2010, 26, 15625.
[23] Chen, B.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. Angew. Chem., Int. Ed. 2006, 45, 1390.
[24] Luebbers, M. T.; Wu, T.; Shen, L.; Masel, R. I. Langmuir 2010, 26, 11319.
[25] Münch, A. S.; Seidel, J.; Obst, A.; Weber, E.; Mertens, F. O. R. L. Chem.-Eur. J. 2011, 17, 10958.
[26] Bozbiyik, B.; Lannoeye, J.; De Vos, D. E.; Baron, G. V.; Denayer, J. F. M. Chem. Phys. 2016, 18, 3294.
[27] Fang, Z.; Zheng, S.; Tan, J.; Cai, S.; Fan, J.; Yan, X.; Zhang, W. J. Chromatogr. A 2013, 1285, 132.
[28] Tian, J.; Lu, C.; He, C.; Lu, T.; Ouyang, G. Talanta 2016, 152, 283.
[29] Chang, N.; Yan, X. J. Chromatogr. A 2012, 1257, 116.
[30] Bozbiyik, B.; Duerinck, T.; Lannoeye, J.; De Vos, D. E.; Baron, G. V.; Denayer, J. F. M. Micropor. Mesopor. Mater. 2014, 183, 143.
[31] Van der Perre, S.; Bozbiyik, B.; Lannoeye, J.; De Vos, D. E.; Baron, G. V.; Denayer, J. F. M. J. Phys. Chem. C 2015, 119, 1832.
[32] Yusuf, K.; Badjah-Hadj-Ahmed, A. Y.; Aqel, A.; Alothman, Z. A. J. Chromatogr. A 2015, 1406, 299.
[33] Srivastava, M.; Roy, P. K.; Ramanan, A. RSC Adv. 2016, 6, 13426.
[34] Muench, A. S.; Mertens, F. O. R. L. J. Mater. Chem. 2012, 22, 10228.
[35] Gu, Z.; Yan, X. Angew. Chem. Int. Ed. 2010, 49, 1477.
[36] Fan, L.; Yan, X. Talanta 2012, 99, 944.
[37] Xie, S.; Zhang, Z.; Wang, Z.; Yuan, L. J. Am. Chem. Soc. 2011, 133, 11892.
[38] Xie, S.; Zhang, X.; Zhang, Z.; Zhang, M.; Jia, J.; Yuan, L. Anal. Bioanal. Chem. 2013, 405, 340.
[39] Xie, S.; Zhang, X.; Zhang, Z.; Yuan, L. Anal. Lett. 2013, 46, 753.
[40] Zhang, X.; Xie, S.; Duan, A.; Wang, B.; Yuan, L. Chromatographia 2013, 76, 831.
[41] Xie, S.; Wang, B.; Zhang, X.; Zhang, J.; Zhang, M.; Yuan, L. Chirality 2014, 26, 27.
[42] Xie, S. M.; Zhang, Z. J.; Yuan, L. M. Chem. J. Chin. Univ. 2014, 35, 1652. (谢生明, 张泽俊, 袁黎明, 高等学校化学学报, 2014, 35, 1652.)
[43] Xie, S.; Zhang, X.; Wang, B.; Zhang, M.; Zhang, J.; Yuan, L. Chromatographia 2014, 77, 1359.
[44] Xue, X.; Zhang, M.; Xie, S.; Yuan, L. Acta Chromatogr. 2015, 27, 15.
[45] Böhle, T.; Mertens, F. Micropor. Mesopor. Mater. 2014, 183, 162.
[46] Finsy, V.; Verelst, H.; Alaerts, L.; De Vos, D.; Jacobs, P. A.; Baron, G. V.; Denayer, J. F. M. J. Am. Chem. Soc. 2008, 130, 7110.
[47] Gu, Z.; Jiang, D.; Wang, H.; Cui, X.; Yan, X. J. Phys. Chem. C 2010, 114, 311.
[48] Münch, A. S.; Mertens, F. O. R. L. CrystEngComm 2015, 17, 438.
[49] Li, Z. Y. Mod. Chem. Ind. 1999, 19, 7. (李政禹, 现代化工, 1999, 19, 7.)
[50] Gu, Z.; Jiang, J.; Yan, X. Anal. Chem. 2011, 83, 5093.
[51] Borjigin, T.; Sun, F.; Zhang, J.; Cai, K.; Ren, H.; Zhu, G. Chem. Commun. (Camb) 2012, 48, 7613.
[52] Sun, J.; Ji, M.; Chen, C.; Wang, W.; Wang, P.; Chen, R.; Zhang, J. Chem. Commun. 2013, 49, 1624.
[53] Maes, M.; Vermoortele, F.; Alaerts, L.; Couck, S.; Kirschhock, C. E. A.; Denayer, J. F. M.; De Vos, D. E. J. Am. Chem. Soc. 2010, 132, 15277.
[54] Yang, C.; Yan, X. Anal. Chem. 2011, 83, 7144.
[55] Zhao, W.; Zhang, C.; Yan, Z.; Bai, L.; Wang, X.; Huang, H.; Zhou, Y.; Xie, Y.; Li, F.; Li, J. J. Chromatogr. A 2014, 1370, 121.
[56] Hartlieb, K. J.; Holcroft, J. M.; Moghadam, P. Z.; Vermeulen, N. A.; Algaradah, M. M.; Nassar, M. S.; Botros, Y. Y.; Snurr, R. Q.; Stoddart, J. F. J. Am. Chem. Soc. 2016, 138, 2292.
[57] Ahmad, R.; Wong-Foy, A. G.; Matzger, A. J. Langmuir 2009, 25, 11977.
[58] Ameloot, R.; Liekens, A.; Alaerts, L.; Maes, M.; Galarneau, A.; Coq, B.; Desmet, G.; Sels, B. F.; Denayer, J. F. M.; De Vos, D. E. Eur. J. Inorg. Chem. 2010, 3735.
[59] Ahmed, A.; Forster, M.; Clowes, R.; Myers, P.; Zhang, H. Chem. Commun. 2014, 50, 14314.
[60] Alaerts, L.; Kirschhock, C. E. A.; Maes, M.; van der Veen, M. A.; Finsy, V.; Depla, A.; Martens, J. A.; Baron, G. V.; Jacobs, P. A.; Denayer, J. E. M.; De Vos, D. E. Angew. Chem. Int. Ed. 2007, 46, 4293.
[61] Yan, Z.; Zhang, W.; Gao, J.; Lin, Y.; Li, J.; Lin, Z.; Zhang, L. RSC Adv. 2015, 5, 40094.
[62] Alaerts, L.; Maes, M.; Giebeler, L.; Jacobs, P. A.; Martens, J. A.; Denayer, J. F. M.; Kirschhock, C. E. A.; De Vos, D. E. J. Am. Chem. Soc. 2008, 130, 14170.
[63] Liu, S.; Yang, C.; Wang, S.; Yan, X. Analyst 2012, 137, 816.
[64] El Osta, R.; Carlin-Sinclair, A.; Guillou, N.; Walton, R. I.; Vermoortele, F.; Maes, M.; de Vos, D.; Millange, F. J. Mater. Chem. 2012, 24, 2781.
[65] Yang, C. X.; Liu, S. S.; Wang, H. F.; Wang, S. W.; Yan, X. P. Analyst 2012, 137, 133.
[66] Zhang, M.; Zhang, J.; Zhang, Y.; Wang, B.; Xie, S.; Yuan, L. J. Chromatogr. A 2014, 1325, 163.
[67] Fu, Y.; Yang, C.; Yan, X. J. Chromatogr. A 2013, 1274, 137.
[68] Zhang, X.; Han, Q.; Ding, M. RSC Adv. 2015, 5, 1043.
[69] Qin, W.; Silvestre, M. E.; Li, Y.; Franzreb, M. J. Chromatogr. A 2016, 1432, 84.
[70] Nong, R. Y.; Kong, J.; Zhang, J. H.; Chen, L.; Tang, B.; Xie, S. M.; Yuan, L. M. Chem. J. Chin. Univ. 2016, 37, 19. (农蕊瑜, 孔娇, 章俊辉, 陈玲, 汤波, 谢生明, 袁黎明, 高等学校化学学报, 2016, 37, 19.)
[71] Qin, W.; Silvestre, M. E.; Brenner-Weiss, G.; Wang, Z.; Schmitt, S.; Hübner, J.; Franzreb, M. Sep. Purif. Technol. 2015, 156, 249.
[72] Yang, F.; Yang, C.; Yan, X. Talanta 2015, 137, 136.
[73] Fu, Y.; Yang, C.; Yan, X. Langmuir 2012, 28, 6794.
[74] He, Y. P.; Tan, Y. X.; Zhang, J. Acta Chim. Sinica 2014, 72, 1228. (何燕萍, 谭衍曦, 张健, 化学学报, 2014, 72, 1228.)
[75] Qi, X. Y.; Li, X. J.; Bai, Y.; Liu, H. W. Chin. J. Chrom. 2016, 34, 10. (祁晓月, 李先江, 白玉, 刘虎威, 色谱, 2016, 34, 10.)
[76] Shu, L.; Chen, S.; Zhao, W.; Bai, Y.; Ma, X.; Li, X.; Li, J.; Somsundaran, P. J. Sep. Sci. 2016, 39, 3163.
[77] Yan, Z.; Zheng, J.; Chen, J.; Tong, P.; Lu, M.; Lin, Z.; Zhang, L. J. Chromatogr. A 2014, 1366, 45.
[78] Fu, Y.; Yang, C.; Yan, X. Chem.-Eur. J. 2013, 19, 13484.
[79] Padmanaban, M.; Mueller, P.; Lieder, C.; Gedrich, K.; Gruenker, R.; Bon, V.; Senkovska, I.; Baumgaertner, S.; Opelt, S.; Paasch, S.; Brunner, E.; Glorius, F.; Klemm, E.; Kaskel, S. Chem. Commun. 2011, 47, 12089.
[80] Nuzhdin, A. L.; Dybtsev, D. N.; Bryliakov, K. P.; Talsi, E. P.; Fedin, V. P. J. Am. Chem. Soc. 2007, 129, 12958.
[81] Tanaka, K.; Muraoka, T.; Hirayama, D.; Ohnish, A. Chem. Commun. 2012, 48, 8577.
[82] Zhang, M.; Pu, Z.; Chen, X.; Gong, X.; Zhu, A.; Yuan, L. Chem. Commun. 2013, 49, 5201.
[83] Kuang, X.; Ma, Y.; Su, H.; Zhang, J.; Dong, Y.; Tang, B. Anal. Chem. 2014, 86, 1277.
[84] Yuan, L. J. Chromatogr. A 2014, 1363, 137.
[85] Zhang, M.; Xue, X.; Zhang, J.; Xie, S.; Zhang, Y.; Yuan, L. Anal. Methods 2014, 6, 341.
[86] Hailili, R.; Wang, L.; Qy, J.; Yao, R.; Zhang, X.; Liu, H. Inorg. Chem. 2015, 54, 3713.
[87] Tanaka, K.; Muraoka, T.; Otubo, Y.; Takahashi, H.; Ohnishi, A. RSC Adv. 2016, 6, 21293.
[88] Tanaka, K.; Hotta, N.; Nagase, S.; Yoza, K. New J. Chem. 2016, 40, 4891.
[89] Dai, Q.; Ma, J.; Ma, S.; Wang, S.; Li, L.; Zhu, X.; Qiao, X. ACS Appl. Mater. Inter. 2016, 8, 21632.
[90] Chen, L.; Ou, J.; Wang, H.; Liu, Z.; Ye, M.; Zou, H. ACS Appl. Mater. Inter. 2016, 8, 20292.
[91] Srivastava, M.; Roy, P. K.; Ramanan, A. RSC Adv. 2016, 6, 13426.
/
| 〈 |
|
〉 |