二维(2D)沸石与三维(3D)沸石的制备及催化研究进展
收稿日期: 2021-10-29
网络出版日期: 2021-12-21
基金资助
国家自然科学基金资助项目(21776229); 国家自然科学基金资助项目(21908180); 国家自然科学基金资助项目(22078266); 国家自然科学基金资助项目(22178289); 国家重点研发计划资助项目(2018YFB0604603); 陕西省重点研发计划项目(2020ZDLGY11-02); 陕西省重点研发计划项目(2018ZDXM-GY-167); 陕西省重点研发计划项目(2021GY-136)
Progress in Preparation and Catalysis of Two-dimensional (2D) and Three-dimensional (3D) Zeolites
Received date: 2021-10-29
Online published: 2021-12-21
Supported by
National Natural Science Foundation of China(21776229); National Natural Science Foundation of China(21908180); National Natural Science Foundation of China(22078266); National Natural Science Foundation of China(22178289); National Key R&D Plan(2018YFB0604603); Key R&D Projects in Shaanxi Province(2020ZDLGY11-02); Key R&D Projects in Shaanxi Province(2018ZDXM-GY-167); Key R&D Projects in Shaanxi Province(2021GY-136)
如今在能源紧缺和“双碳”背景下, 能源清洁高效利用显得异常重要. 沸石催化剂是在能源加工过程中提高产出和品质的重要手段, 现已成为该领域的研究热点. 随着对沸石研究的进一步深入, 它们的性质和结构逐渐清晰, 广泛应用于催化、吸附、分离等行业. 独特晶体结构的二维沸石, 它们的片层结构在降低分子传输路径的同时, 可增大活性位点的可及性, 降低了积碳率, 具有较大应用潜力. 此外, 通过改变结构导向剂的结构可以拓宽二维沸石的种类, 符合工业上适应范围广的特点. 在此, 综述了两种维度分子筛的发展过程, 阐明了它们在不同领域中催化转化的构-效关系, 以及二维沸石的制备路径. 整理了合成机理并分析了二维沸石在比表面积和活性位点可及性上的优势, 为二维沸石分子筛在工业中的应用提供借鉴.
何磊 , 么秋香 , 孙鸣 , 马晓迅 . 二维(2D)沸石与三维(3D)沸石的制备及催化研究进展[J]. 化学学报, 2022 , 80(2) : 180 -198 . DOI: 10.6023/A21100489
Nowadays, under the background of energy shortage and “double carbon”, clean and efficient utilization of energy is very important. Zeolite catalyst is an important means to improve the output and quality in the process of energy processing, and has become a research hotspot in this field. From natural zeolites to artificial zeolites, from three-dimensional (3D) zeolites to two-dimensional (2D) zeolites, with the further study of zeolites, their properties and structures are gradually clear, and they are widely used in catalysis, adsorption, separation and other industries. Especially the 2D zeolites with unique crystal structure (or morphology), their lamellar structures not only reduce the molecular transmission path, but also provide more active sites for the catalytic reaction system and reduce the carbon deposition rate, which have great application potential in the future. When it comes to 2D zeolites, structure directing agent plays a very important role, the types of 2D zeolites can be broadened by changing the structure of directing agent structure, and in this way, the structural change elasticity of zeolites can be increased, which meets the industrial requirements and has a wide range of adaptability. Here, this paper summarizes the development process of 3D and 2D molecular sieves, focuses on the catalytic efficiency of zeolites, expounds their structure-activity relationship in different fields such as coal tar catalytic conversion, C1 chemical industry and biomass catalytic conversion, as well as the preparation path of 2D zeolites, summarizes the conversion mechanism, and analyzes the advantages of 2D zeolites in specific surface area and active site accessibility, it provides a reference for the application of 2D zeolite molecular sieves in industry.
[1] | BP. Statistical Review of World Energy 2021 (70th edition), BP p.l.c., London, 2021, https://www.bp.com/statisticalreview. |
[2] | Ma, X. X.; Zhao, Y. K.; Sun, M.; Yao, Q. X. Coal Convers. 2020, 43, 1. (in Chinese) |
[2] | ( 马晓迅, 赵阳坤, 孙鸣, 么秋香, 煤炭转化, 2020, 43, 1.) |
[3] | Zhang, Q.; Yu, J. H.; Croma, A. Adv. Mater. 2020, 32, 2002927. |
[4] | Zhang, M. T.; Yan, T. T.; Dai, W. L.; Guan, N. J.; Li, L. D. Acta Chim. Sinica 2020, 78, 1404. (in Chinese) |
[4] | ( 张梦婷, 颜婷婷, 戴卫理, 关乃佳, 李兰冬, 化学学报, 2020, 78, 1404.) |
[5] | Sumelius, G.In Synthesis of Microporous Materials, Vol. 1, Eds.: Occelli, M. L.; Robson, H. E., Pergamon, New York, 1992, p. 1. |
[6] | Colella, C.; Gualtieri, A. F. Micropor. Mesopor. Mater. 2007, 105, 213. |
[7] | Schlenker, L.; Kühl, G. H.In Proceedings 9th International Zeolite Conference, Eds.: Ballmoos, R. V.; Higgins, J. B.; Treacy, M. M. J., Pergamon, Boston, 1993, p. 3 |
[8] | Rojo, T.; Luis, M. J.; Lago, J.; Bazan, B.; Pizarro, J. L.; Arriortua, M. I. J. Mater. Chem. 2009, 19, 3793. |
[9] | Baerlocher, C.; McCusker, L. B. Database of Zeolite Structures, 2021, http://www.iza-structure.org/databases/. |
[10] | Zones, S. I. Micropor. Mesopor. Mater. 2011, 144, 1. |
[11] | Roth, W. J.; Nachtigall, P.; Morris, R. E.; Čejka, J. Chem. Rev. 2014, 114, 4807. |
[12] | Přech, J.; Pizarro, P.; Serrano, D. P.; Čejka, J. Chem. Soc. Rev. 2018, 47, 8263. |
[13] | Baerlocher, C.; McCusker, L. B.; Meier, W. M.; Olson, D. H. Atlas of zeolite framework types, Elsevier Science & Technology, Oxford, 2007, p. 405. |
[14] | Mahyuddin, M. H.; Shiota, Y.; Yoshizawa, K. Catal. Sci. Technol. 2019, 9, 1744. |
[15] | McCusker, L. B.; Baerlocher, C.In Studies in Surface Science and Catalysis, Vol. 157, Eds.: Ĉejka, J.; Bekkum, H. V., Elsevier Science & Technology, Oxford, 2005, pp. 41-64. |
[16] | Bellussi, G.; Carati, A.; Rizzo, C.; Millini, R. Catal. Sci. Technol. 2013, 3, 833. |
[17] | Huo, Q. S.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147. |
[18] | Xiao, F. A.; Wang, L. F.; Yin, C. Y.; Lin, K. F.; Di, Y.; Li, J. X.; Xu, R. R.; Su, D. S.; Robert, S.; Toshiyuki, Y.; Takashi, T. Angew. Chem. Int. Ed. 2006, 45, 3090. |
[19] | Jin, J. S.; Peng, C. Y.; Wang, J. J.; Liu, H. T.; Gao, X. H.; Liu, H. H.; Xu, C. Y. Ind. Eng. Chem. Res. 2014, 53, 3406. |
[20] | Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Nature 2009, 461, 246. |
[21] | Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R. J.; Chmelka, S. F.; Ryoo, R. Science 2011, 333, 246. |
[22] | Park, W.; Yu, D.; Na, K.; Jelfs, K. E.; Slater, B.; Sakamoto, Y.; Ryoo, R. Chem. Mater. 2011, 23, 5131. |
[23] | Emdadi, L.; Wu, Y. Q.; Zhu, G. H.; Chang, C. C.; Fan, W.; Pham, T.; Lobo, R. F.; Liu, D. X. Chem. Mater. 2014, 26, 1345. |
[24] | Emdadi, L.; Tran, D. T.; Schulman, E.; Wei, L.; Shang, W. J.; Chen, H. Y.; Liu, D. X. Micropor. Mesopor. Mater. 2019, 275, 31. |
[25] | Kim, Y.; Kim, Y.; Ryoo, R. Chem. Mater. 2017, 29, 1752. |
[26] | Chen, J. Q.; Li, Y. Z.; Hao, Q. Q.; Chen, H. Y.; Liu, Z. T.; Dai, C. Y.; Zhang, J. B.; Ma, X. X.; Liu, Z. W. Nat. Sci. Rev. 2020, 8, nwaa236. |
[27] | Yuan, D. L.; Kang, C. Y.; Wang, W. N.; Li, H.; Zhu, X. C.; Wang, Y. D.; Gao, X. H.; Wang, B. J.; Zhao, H. J.; Liu, C. H.; Shen, B. J. Catal. Sci. Technol. 2016, 6, 8364. |
[28] | Verboekend, D.; Pérez-Ramírez, J. Catal. Sci. Technol. 2011, 6, 879. |
[29] | Zhang, N. N.; Zhang, Z. Z.; Li, G.; Xu, L.; Lan, T. W.; Gao, T.; Ma, X. X. Chem. Ind. Eng. Prog. 2018, 37, 4616. (in Chinese) |
[29] | ( 张妮娜, 张壮壮, 李刚, 徐龙, 兰婷玮, 高婷, 马晓迅, 化工进展, 2018, 37, 4616.) |
[30] | Ogura, M.; Shinomiya, S.; Tateno, J.; Nara, Y.; Nomura, M.; Kikuchi, E.; Matsukata, M. Appl. Catal. A-Gen. 2001, 219, 33. |
[31] | Jacobsen, C. J. H.; Madsen, C.; Janssens, T. V. W.; Jacobsen, H. J.; Skibsted, J. Micropor. Mesopor. Mater. 2000, 39, 393. |
[32] | Chen, H. Y.; Wydra, J.; Zhang, X. Y.; Lee, P. S.; Wang, Z. P.; Fan, Wei.; Tsapatsis, M. J. Am. Chem. Soc. 2011, 133, 12390. |
[33] | Lee, P. S.; Hong, D. Y.; Cha, G. Y.; An, H.; Moon, S. Y.; Seong, M.; Chang, B. J.; Lee, J. S.; Kim, J. H. Sep. Purif. Technol. 2019, 210, 29. |
[34] | Sun, J. L.; Bonneau, C.; Cantín, Á.; Croma, A.; Díaz-Cabañas, M. J.; Moliner, M.; Zhang, D. L.; Li, M. R.; Zou, X. D. Nature 2009, 458, 1154. |
[35] | Wen, J. L.; Zhang, J. H.; Jiang, J. X. Chem. J. Chinese U. 2021, 42, 101. (in Chinese) |
[35] | ( 闻嘉丽, 张均豪, 姜久兴, 高等学校化学学报, 2021, 42, 101.) |
[36] | Corma, A.; Díaz-Cabañas, M. J.; Jiang, J.; Afeworki, M.; Dorset, D. L.; Soled, S. L.; Strohmaier, K. G. Proc. Natl Acad. Sci. 2010, 107, 13997. |
[37] | Jiang, J. X.; Jorda, J. L.; Diaz-Cabanas, M. J.; Yu, J. H.; Corma, A. Angew. Chem. Int. Ed. 2010, 49, 4986. |
[38] | Jiang, J. X.; Jorda, J. L.; Yu, J. H.; Baumes, L. A.; Mugnaioli, E.; Diaz-Cabanas, M. J.; Kolb, U.; Corma, A. Science 2011, 333, 1131. |
[39] | Martinez-Franco, R.; Moliner, M.; Yun, Y. F.; Sun, J. L.; Wan, W.; Zou, X. D.; Corma, A. Proc. Natl. Acad. Sci. 2013, 110, 3749. |
[40] | Chen, F. J.; Xu, Y.; Du, H. B. Angew. Chem. Int. Ed. 2014, 53, 9596. |
[41] | Wheatley, P. S.; Chlubná-Eliášová, P.; Greer, H.; Zhou, W. Z.; Seymour, V. R.; Ashbrook, S. E.; Pinar, A. B.; McCusker, L. B.; Opanasenko, M.; Čejka, J.; Morris, R. E. Angew. Chem. Int. Ed. 2014, 53, 13210. |
[42] | Smeets, S.; Xie, D.; Baerlocher, C.; McCusker, L. B.; Wan, W.; Zou, X. D.; Zones, S. I. Angew. Chem. Int. Ed. 2014, 53, 10398. |
[43] | Willhammar, T.; Burton, A. W.; Yun, Y. F.; Sun, J. L.; Afeworki, M.; Strohmaier, K. G.; Vroman, H.; Zou, X. D. J. Am. Chem. Soc. 2014, 136, 13570. |
[44] | Yun, Y. F.; Hernández, M.; Wan, W.; Zou, X. D.; Jorda, J. L.; Cantin, A.; Rey, F.; Corma, A. Chem. Commun. 2015, 51, 7602. |
[45] | Jiang, J. X.; Yun, Y. F.; Zou, X. D.; Jorda, J. L.; Corma, A. Chem. Sci. 2015, 6, 480. |
[46] | Jo, C.; Lee, S.; Cho, S. J.; Ryoo, R. Chem. Sci. 2015, 54, 12805. |
[47] | Smeets, S.; Berkson, Z. J.; Dan, X.; Zones, S. I.; Zou, X. D.; Hsieh, M. F.; Chmelka, B. F.; McCusker, L. B.; Baerlocher, C. J. Am. Chem. Soc. 2017, 139, 16803. |
[48] | Zhang, C. Q.; Kapaca, E.; Li, J. Y.; Liu, Y. L.; Yi, X. F.; Zheng, A.; Zou, X. D.; Jiang, J. X.; Yu, J. H. Angew. Chem. Int. Ed. 2018, 57, 6486. |
[49] | Yang, B. T.; Jiang, J. G.; Xu, H.; Wu, H. H.; He, M. Y.; Wu, P. Angew. Chem. Int. Ed. 2018, 57, 9515. |
[50] | Zi, W. W.; Gao, Z. H.; Zhang, J.; Zhao, B. X.; Cai, X. S.; Du, H. B.; Chen, F. J. Angew. Chem. Int. Ed. 2020, 59, 3948. |
[51] | Villaescusa, L. A.; Li, J.; Gao, Z. H.; Sun, J. L.; Camblor, M. A. Angew. Chem. Int. Ed. 2020, 59, 11283. |
[52] | Gao, Z. H.; Li, J.; Lin, C.; Mayoral, A.; Sun, J. L.; Camblor, M. A. Angew. Chem. Int. Ed. 2021, 60, 3438. |
[53] | Kapaca, E.; Jiang, J. X.; Cho, J.; Jorda?, J. L.; Di?az-Caban?as, M. J.; Zou, X. D.; Corma, A.; Willhammar, T. J. Am. Chem. Soc. 2021, 143, 8713. |
[54] | Roth, W. J.; Čejka, J. Catal. Sci. Technol. 2011, 1, 43. |
[55] | Opanasenko, M. V.; Roth, W. J.; Čejka, J. Catal. Sci. Technol. 2016, 6, 2467. |
[56] | Xu, L.; Sun, J. L. Adv. Energy Mater. 2016, 6, 1600441. |
[57] | Xu, R. R.; Pang, W, Q.; Huo, Q. S. Molecular Sieve and Porous Material Chemistry (Second Edition), Science Press, Beijing, 2014. (in Chinese) |
[57] | ( 徐如人, 庞文琴, 霍启升, 分子筛与多孔材料化学第二版, 科学出版社, 北京, 2014.) |
[58] | Davis, M. E.; Lobo, R. F. Chem. Mater. 1992, 4, 756. |
[59] | Hu, C. Y.; Yan, W. F.; Xu, R. R. Acta Chim. Sinica 2017, 75, 679. (in Chinese) |
[59] | ( 胡成玉, 闫文付, 徐如人, 化学学报, 2017, 75, 679.) |
[60] | Rabenau, A. Angew. Chem. Int. Ed. 1985, 24, 1026. |
[61] | Ling, Y.; Zheng, Y. T.; Liu, Y. M.; Wang, Z. D.; Wu, H. H.; Wu, P. Acta Chim. Sinica 2010, 68, 2035. (in Chinese) |
[61] | ( 凌云, 郑玉婷, 刘月明, 王振东, 吴海虹, 吴鹏, 化学学报, 2010, 68, 2035.) |
[62] | Braun, I.; Schulz-Ekloff', G.; Wohrle, D.; Lautenschlager, W. Micropor. Mesopor. Mater. 1998, 23, 79. |
[63] | Full text database of Science Direct. Elsevier, https://www.sciencedirect.com/. |
[64] | Vercammen, J.; Bocus, M.; Neale, S.; Bugaev, A.; Tomkins, P.; Hajek, J.; Van Minnebruggen, S.; Soldatov, A.; Krajnc, A.; Mali, G.; Speybroeck, V. V.; Vos, D. E. D. Nat. Catal. 2020, 3, 1002. |
[65] | Xu, L. L.; Zhao, R. R.; Zhang, W. P. App. Catal. B 2020, 279, 1002. |
[66] | Sun, M. H.; Zhou, J.; Hu, Z. Y.; Chen, L. H.; Li, L. Y.; Wang, Y. D.; Xie, Z. K.; Turner, S.; Van Tendeloo, G.; Hasan, T.; Su, B. L. Matter 2020, 3, 1. |
[67] | Leonowicz, M. E.; Roth, W. J.; Kresge, C. T.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710. |
[68] | Pan, D.; Wang, Y. M.; Jiang, L. H. Chem. Ind. Eng. Prog. 2016, 35, 2500. (in Chinese) |
[68] | ( 潘登, 王亚明, 蒋丽红, 化工进展, 2016, 35, 2500.) |
[69] | Srivastava, R.; Ryoo, R.; Choi, M.; Venkatesan, C.; Cho, H. S.; Choi, D. H. Nat. Mater. 2006, 5, 718. |
[70] | Meier, W. M. Monograph on “Molecular Sieves”, Society of Chemical Industry, London, 1968, pp. 10-27. |
[71] | Meier, W. M.; Olson, D. H. Atlas of zeolites and Related Materials. Butterworths, London, 1987, p. 5. |
[72] | Smith, J. V. Chem. Rev. 1988, 88, 149. |
[73] | Smith, J. V. Tetrahedral Frameworks of Zeolites, Clathrates Related Materials, Vol. 14A, Springer, Berlin, 2000, p. 266. |
[74] | Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier, W. M. Nature 1978, 272, 437. |
[75] | Palčića, A.; Valtchev, V. Appl. Catal. A-Gen. 2020, 606, 117795. |
[76] | Rabo, J. A.; Schoonove Michael, W. R. Appl. Catal. A-Gen. 2001, 222, 261. |
[77] | Serrano, D. P.; Van, G. R. J. Mater. Chem. 2001, 11, 2391. |
[78] | Kong, X. J.; Bai, Y, H.; Yan, L. J.; Li, F. Fuel 2016, 180, 205. |
[79] | Wei, B. Y.; Jin, L. J.; Wang, D. C.; Shi, H.; Hu, H. Q. Fuel, 2020, 259, 116234. |
[80] | Sun, M.; Liu, Y. Q.; Zhang, D.; Ma, M. M.; Yao, Q. X.; Jia, Q.; Ma, X. X. J. China U. Min. Techno. 2019, 48, 647. (in Chinese) |
[80] | ( 孙鸣, 刘永琦, 张丹, 马明明, 么秋香, 贾强, 马晓迅, 中国矿业大学学报, 2019, 48, 647.) |
[81] | Liu, Y. Q.; Yao, Q. X.; Sun, M.; Ma, X. X. J. Anal. Appl. Pyrolysis 2021, 156, 105127. |
[82] | Wang, L. Y.; Wang, Q.; Liu, Y. Q.; Yao, Q. X.; Sun, M.; Ma, X. X. Chin. J. Chem. Eng. 2021. https://doi.org/10.1016/j.cjche.2021.09.012 |
[83] | Yao, Q. X.; Liu, Y. Q.; Zhang, D.; Sun, M.; Ma, X. X. ACS Omega 2021, 6, 4062. |
[84] | Gac, W.; Zawadzki, W.; Słowik, G.; Kuśmierz, M.; Dzwigaj, S. Appl. Surf. Sci. 2021, 564, 150421. |
[85] | Rahman, M. M.; Liu, R. H.; Cai, J. M. Fuel Process. Technol. 2018, 180, 32. |
[86] | Kostyniuk, A.; Grilc, M.; Likozar, B. Ind. Eng. Chem. Res. 2019, 58, 7690. |
[87] | Kostyniuk, A.; Bajec, D.; Likozar, B. Appl. Catal. A-Gen. 2021, 612, 118004. |
[88] | Li, F. W.; Ding, S. L.; Wang, Z. H.; Li, Z. X.; Li, L.; Gao, C.; Zhong, Z.; Lin, H. F.; Chen, C. J. Energy Fuels 2018, 32, 5910. |
[89] | Moreno-Recio, M.; Santamaría-González, J.; Maireles-Torres, P. Chem. Eng. J. 2016, 303, 22. |
[90] | Jae, J.; Tompsett, G. A.; Foster, A. J.; Hammond, K. D.; Auerbach, S. M.; Lobo, R. F.; Huber, G. W. J. Catal. 2011, 279, 257. |
[91] | Chen, G. B.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Li, Z. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Angew. Chem. Int. Ed. 2019, 58, 17528. |
[92] | Zhou, W.; Cheng, K.; Kang, J. C.; Zhou, C.; Subramanian, V.; Zhang, Q. H.; Wang, Y. Chem. Soc. Rev. 2019, 48, 3193. |
[93] | Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R.; Miao, S.; Li, J.; Zhu, Y. F.; Xiao, D.; He, T.; Yang, J. H.; Qi, F.; Fu, Q.; Bao, X. H. Science 2016, 351, 1065. |
[94] | Jiao, F.; Pan, X. L.; Gong, K.; Chen, Y. X.; Li, G.; Bao, X. H. Angew. Chem. Int. Ed. 2018, 57, 4692. |
[95] | Liu, X. L.; Zhou, W.; Yang, Y. D.; Cheng, K.; Kang, J. C.; Zhang, L.; Zhang, G. Q.; Min, X. J.; Zhang, Q. H.; Wang, Y. Chem. Sci. 2018, 9, 4708. |
[96] | Zhang, P.; Meng, F. H.; Li, X. J.; Yang, L. L.; Ma, P. C.; Li, Z. Catal. Sci. Technol. 2018, 9, 5577. |
[97] | Santos, V. P.; Pollefeyt, G.; Yancey, D. F.; Ciftci Sandikci, A.; Vanchura, B.; Nieskens, D. L. S.; De Kok-Kleiberg, M.; Kirilin, A.; Chojecki, A.; Malek, A. J. Catal. 2020, 381, 108. |
[98] | Wang, M. H.; Kang, J. C.; Xiong, X. W.; Zhang, F. Y.; Cheng, K.; Zhang, Q. H.; Wang, Y. Catal. Today 2021, 371, 85. |
[99] | Su, J. J.; Liu, C.; Liu, S. L.; Ye, Y. C.; Du, Y. J.; Zhou, H. B.; Liu, S.; Jiao, W. Q.; Zhang, L.; Wang, C. M.; Wang, Y. D.; Xie, Z. K. Cell Rep. Phys. Sci. 2021, 2, 100290. |
[100] | Ji, Y. J.; Zhang, B.; Zhang, K.; Xu, L.; Peng, H. G.; Wu, P. Acta Chim. Sinica 2013, 71, 371. (in Chinese) |
[100] | ( 纪永军, 张斌, 张坤, 徐乐, 彭洪根, 吴鹏, 化学学报, 2013, 71, 371.) |
[101] | Yang, J. H.; Pan, X. L.; Jiao, F.; Li, J.; Bao, X. H. Chem. Commun. 2017, 53, 11146. |
[102] | Cheng, L. K.; Meng, C.; Yang, T. H.; Li, N.; Liu, D. H. Energy Fuels 2018, 32, 9756. |
[103] | Xu, Y. F.; Wang, J.; Ma, G. Y.; Bai, J. Y.; Du, Y. X.; Ding, M. Y. Appl. Catal. A-Gen. 2020, 598, 117589. |
[104] | Liu, C.; Su, J. J.; Xiao, Y.; Zhou, J.; Liu, S.; Zhou, H. B.; Ye, Y. C.; Lu, Y. Q.; Zhang, Y. D.; Jiao, W. Q.; Zhang, L.; Wang, Y. D.; Wang, C. M.; Zheng, X. S.; Xie, Z. K. Chem Catal. 2021, 1, 1. |
[105] | Miao, D. Y.; Pan, X. L.; Jiao, F.; Ji, Y.; Hou, G. J.; Xu, L.; Bao, X. H. Catal. Sci. Technol. 2021, 11, 4521. |
[106] | Mac Dowell, N.; Fennell, P. S.; Shah, N.; Maitland, G. C. Nat. Clim. Change 2017, 7, 243. |
[107] | Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709. |
[108] | Li, J.; Yu, T.; Miao, D. Y.; Pan, X. L.; Bao, X. H. Catal. Commun. 2019, 12, 105711. |
[109] | Gao, P.; Dang, S. S.; Li, S. G.; Bu, X. N.; Liu, Z. Y.; Qiu, M. H.; Yang, C. G.; Wang, H.; Zhong, L. S.; Han, Y.; Liu, Q.; Wei, W.; Sun, Y. H. ACS Catal. 2018, 8, 571. |
[110] | Liu, X. L.; Wang, M. H.; Yin, H. R.; Hu, J. T.; Cheng, K.; Kang, J. C.; Zhang, Q. H.; Wang, Y. ACS Catal. 2020, 10, 8303. |
[111] | Ni, Y. M.; Chen, Z. Y.; Fu, Y.; Liu, Y.; Zhu, W. L.; Liu, Z. M. Nat. Commun. 2018, 9, 3457. |
[112] | Dai, C. Y.; Zhao, X.; Hu, B. R.; Zhang, J. X.; Hao, Q. Q.; Chen, H. Y.; Guo, X. W.; Ma, X. X. Ind. Eng. Chem. Res. 2020, 59, 19194. |
[113] | Zhang, J. F.; Zhang, M.; Chen, S. Y.; Wang, X. X.; Zhou, Z. L.; Wu, Y. Q.; Zhang, T.; Yang, G. H.; Han, Y. Z.; Tan, Y. S. Chem. Commun. 2019, 5, 973. |
[114] | Wei, J.; Yao, R. W.; Ge, Q. J.; Xu, D. Y.; Fang, C. Y.; Zhang, J. X.; Xu, H. Y.; Sun, J. Appl. Catal. B 2021, 283, 119648. |
[115] | Leonowicz, M. E.; Lawton, J. A.; Lawton, S. L.; Rubin, M. K. Science 1994, 264, 1910. |
[116] | Lawton, S. L.; Fung, A. S.; Kennedy, G. J.; Alemany, L. B.; Chang, C. D.; Hatzikos, G. H.; Lissy, D. N.; Rubin, M. K.; Timken, H. C.; Steuernagel, S.; Woessner, D. E. J. Phys. Chem. 1994, 100, 3788. |
[117] | Fan, W. B.; Wu, P.; Namba, S.; Tatsumi, T. Angew. Chem. Int. Ed. 2004, 43, 236. |
[118] | Wu, P.; Ruan, J. F.; Wang, L. L.; Wu, L. L.; Wang, Y.; Liu, Y. M.; Fan, W. B.; He, M. Y.; Terasaki, O.; Tatsumi, T. J. Am. Chem. Soc. 2008, 130, 8178. |
[119] | Roth, W. J.; Kresge, C. T.; Vartuli, J. C.; Leonowicz, M. E.; Fung, A. S.; Mccullen, S. B. Studies in Surface Science and Catalysis, Vol. 94, Elsevier Science & Technology, Szombathely, Hungary, 1995, p. 301. |
[120] | Corma, A.; Di?az, U.; Garci?a, T.; Sastre, G.; Velty, A. J. Am. Chem. Soc. 2010, 132, 15011. |
[121] | Corma, A.; Pergher, S. B.; Fornes, V.; Maesen, T. L. M.; Buglass, J. G. Nature 1998, 396, 353. |
[122] | Varoon, K.; Zhang, X. Y.; Elyassi, B.; Brewer, D. D.; Gettel, M.; Kumar, S.; Lee, J. A.; Maheshwari, S.; Mittal, A.; Sung, C. Y.; Cococcioni, M.; Francis, L. F.; Mccormick, A. V.; Mkhoyan, K. A.; Tsapatsis, M. Science 2011, 333, 72. |
[123] | Roth, W. J. Chapter 7-Synthesis of delaminated and pillared zeolitic materials. Studies in Surface Science and Catalysis, 2007, 168, 221. |
[124] | Schreyeck, L.; Caullet, P.; Mougenel, J. C.; Guth, J. L.; Marler, B. Micropor. Mater. 1996, 6, 259. |
[125] | Park, W.; Yu, D.; Na, K.; Jelfs, K. E.; Slater, B.; Sakamoto, Y.; Ryoo, R. Chem. Mater. 2011, 23, 5131. |
[126] | Roth, W. J.; Dorset, D. L.; Kennedy, G. J. Micropor. Mesopor. Mater. 2011, 142, 168. |
[127] | Roth, W. J. Stud. Surf. Sci. Catal. 2005, 158, 19. |
[128] | Poloij, M.; Thang, H. V.; Rubeš, M.; Eliášová, P.; Čejka, J.; Nachtigall, P. Dalton Trans. 2014, 43, 1443. |
[129] | Zhang, X. Y.; Liu, D. X.; Xu, D. D.; Asahina, S.; Cychosz, K. A.; Agrawal, K. V.; Al Wahedi, Y.; Bhan, A.; Al Hashimi, S.; Terasaki, O.; Thommes, M.; Tsapatsis, M. Science 2012, 336, 1684. |
[130] | Luo, H. Y.; Michaelis, V. K.; Hodges, S.; Griffin, R. G.; Roman- Leshkov, Y. Chem. Sci. 2015, 6, 6320. |
[131] | Grzybek, J.; Roth, W. J.; Gil, B.; Korzeniowska, A.; Mazur, M.; Cejka, J.; Morris, R. E. J. Mater. Chem. A 2019, 7, 7701. |
[132] | Emdadi, L.; Wu, Y. Q.; Zhu, G. H.; Chang, C. C.; Fan, W.; Pham, T.; Lobo, R. F.; Liu, D. X. Chem. Mater. 2014, 26, 1345. |
[133] | Emdadi, L.; Liu, D. X. J. Mater. Chem. A: Mater. Energy Sust. 2014, 2, 13388. |
[134] | Margarit, V. J.; Martínez-Armero, M. E.; Navarro, M. T.; Martínez, C.; Corma, A. Angew. Chem. Int. Ed. 2015, 54, 13724. |
[135] | Wang, M. Y.; Wang, X.; You, Q.; Wu, Y. S.; Yang, X.; Chen, H. Y.; Liu, B. Y.; Hao, Q. Q.; Zhang, J. B.; Ma, X. X. Micropor. Mesopor. Mater. 2021, 323, 111207. |
[136] | Wang, R. S.; Peng, Z. H.; Wu, P. P.; Lu, J. Z.; Rood, M. J.; Sun, H. M.; Zeng, J. B.; Wang, Y. H.; Yan, Z. F. Chem. Eur. J. 2021, 27, 8694. |
[137] | Roth, W. J.; Shvets, O. V.; Shamzhy, M.; Chlubna?, P.; Kubu?, M.; Nachtigall, P.; C?ejka, J. J. Am. Chem. Soc. 2011, 133, 6030. |
[138] | Paillaud, J. L.; Harbuzaru, B.; Patarin, J.; Bats, N. Sci. 2004, 304, 990. |
[139] | Corma, A.; Diaz-Cabanas, M. J.; Rey, F.; Nicolooulas, S.; Boulahya, K. Chem. Commun. 2004, 12, 1356. |
[140] | Xu, L.; Choudhary, M. K.; Muraoka, K.; Chaikittisilp, W.; Wakihara, T.; Rimer, J. D.; Okubo, T. Angew. Chem. Int. Ed. 2019, 58, 14529. |
[141] | Schieber, T. A.; Carpi, L.; Diaz-Guilera, A.; Pardalos, P. M.; Masoller, C.; Ravetti, M. G. Nat. Commun. 2017, 8, 13928. |
[142] | Roth, W. J.; Nachtigall, P.; Morris, R. E.; Wheatley, P. S.; Seymour, V. R.; Ashbrook, S. E.; Chlubna, P.; Grajciar, L.; Polozij, M.; Zukal, A.; Shvets, O.; Cejka, J. Nat. Chem. 2013, 5, 628. |
[143] | Shamzhy, M.; Opanasenko, M.; Tian, Y. Y.; Konysheva, K.; Shvets, O.; Morris, R. E.; C?ejka, J. Chem. Mater. 2014, 26, 5789. |
[144] | Chlubná-Eliášová, P.; Tian, Y. Y.; Pinar, A. B.; Kubů, M.; Čejka, J.; Morris, R. E. Angew. Chem. Int. Ed. 2014, 53, 7048. |
[145] | Wheatley, P. S.; Chlubná-Eliášová, P.; Greer, H.; Zhou, W. Z.; Seymour, V. R.; Dawson, D. M.; Ashbrook, S. E.; Pinar, A. B.; McCusker, L. B.; Opanasenko, M.; Čejka, J.; Morris, R. E. Angew. Chem. Int. Ed. 2014, 53, 13210. |
[146] | Eliášová, P.; Opanasenko, M.; Wheatley, P. S.; Shamzhy, M.; Mazur, M.; Nachtigall, P.; Roth, W. J.; Morris, R. E.; Čejka, J. Chem. Mater. 2015, 44, 7177. |
[147] | Zhang, J.; Vesely?, O.; Tos?ner, Z.; Mazur, M.; Opanasenko, M.; C?ejka, J.; Shamzhy, M. Chem. Mater. 2021, 33, 1228. |
[148] | Mazur, M.; Chlubná-Eliášová, P.; Roth, W. J.; Čejka, J. Catal. Today 2014, 227, 37. |
[149] | Morris, R. E.; Wormald, P.; Webb, P. B.; Cooper, E. R.; Wheatley, P. S.; Andrews, C. D. Nature 2004, 430, 1012. |
[150] | Opanasenko, M.; Parker, W. O.; Shamzhy, M.; Montanari, E.; Bellettato, M.; Mazur, M.; Millini, R.; C?ejka, J. J. Am. Chem. Soc. 2014, 136, 2511. |
[151] | Mazur, M.; Wheatley, P. S.; Navarro, M.; Roth, W. J.; Polozij, M.; Mayoral, A.; Eliasova, P.; Nachtigall, P.; Cejka, J.; Morris, R. E. Nat. Chem. 2016, 8, 58. |
[152] | Opanasenko, M.; Shamzhy, M.; Wang, Y. Z.; Yan, W. F.; Nachtigall, P.; Čejka, J. Angew. Chem. Int. Ed. 2020, 59, 19380. |
[153] | Pophale, R.; Cheeseman, P. A.; Deem, M. W. Phys. Chem. Chem. Phys. 2011, 13, 12407. |
[154] | Liu, L. C.; Diaz, U.; Arenal, R.; Agostini, G.; Concepcion, P.; Corma, A. Nat. Mater. 2017, 16, 132. |
[155] | Zhang, Y. Y.; Kubů, M.; Mazur, M.; Čejka, J. Micropor. Mesopor. Mater. 2019, 279, 364. |
[156] | Shamzhy, M.; Gil, B.; Opanasenko, M.; Roth, W. J.; C?ejka, J. ACS Catal. 2021, 11, 2366. |
[157] | Pérez-Ramírez, J.; Verboekend, D.; Bonilla, A.; Abelló, S. Adv. Funct. Mater. 2009, 19, 3972. |
[158] | Josuinkas, F. M.; Quitete, C. P. B.; Ribeiro, N. F. P.; Souza, M. M. V. M. Fuel Process. Technol. 2014, 121, 76. |
[159] | Li, Z. K.; Wang, H. T.; Yan, H. L.; Yan, J. C.; Lei, Z. P.; Ren, S. B; Wang, Z. C.; Kang, S. G.; Shui, H. F. Fuel 2021, 287. |
[160] | Wang, L.; Chen, J. H.; Watanabe, H.; Xu, Y.; Tamura, M.; Nakagawa, Y.; Tomishige, K. Appl. Catal. B-Environ. 2014, 160-161, 701. |
[161] | Naqvi, S. R.; Uemura, Y.; Yusup, S.; Sugiura, Y.; Nishiyama, N. J. Anal. Appl. Pyrol. 2015, 114, 32. |
[162] | Naqvi, S. Raza.. Naqvi, M.. Inayat, A.. Blanco-Sanchez, P. J. Anal. Appl. Pyrol. 2021, 155, 105025. |
[163] | Wang, N.; Sun, Q. M.; Zhang, T. J.; Mayoral, A.; Li, L.; Zhou, X.; Xu, J.; Zhang, P.; Yu, J. H. J. Am. Chem. Soc. 2021, 143, 6905. |
[164] | Wojtaszek-Gurdak, A.; Trejda, M.; Kryszak, D.; Ziolek, M. Micropor. Mesopor. Mater. 2014, 197, 185. |
[165] | Hadi, N.; Alizadeh, R.; Niaei, A. J. Ind. Eng. Chem. 2017, 54, 82. |
[166] | Hu, S.; Shan, J.; Zhang, Q.; Wang, Y.; Liu, Y. S.; Gong, Y. J.; Wu, Z. J.; Dou, T. Appl. Catal. A-Gen. 2012, 445, 215. |
[167] | Kim, Y. J.; Kim, J. C.; Jo, C. B.; Kim, T. W.; Kim, C. U.; Jeong, S. J.; Chae, H. J. Micropor. Mesopor. Mater. 2016, 222, 1. |
[168] | Peral, A.; Escola, J. M.; Serrano, D. P.; Prech, J.; Ochoa-Hernandez, C.; Cejka, J. Catal. Sci. Technol. 2016, 6, 2754. |
[169] | Aguado, J.; Serrano, D. P.; Romero, M. D.; Escola, J. M. Chem. Commun. 1996, 6, 725. |
[170] | Serrano, D. P.; Aguado, J.; Escola, J. M. Ind. Eng. Chem. Res. 2000, 39, 1177. |
[171] | Tian, Y. J.; Qiu, Y.; Hou, X.; Wang, L.; Liu, G. Z. Energy Fuels 2017, 31, 11987. |
[172] | Xie, W. J.; Fang, W. J.; Xing, Y.; Guo, Y. S.; Lin, R. S. Acta Chim. Sinica 2009, 67, 6. (in Chinese) |
[172] | ( 谢文杰, 方文军, 邢燕, 郭永胜, 林瑞森, 化学学报, 2009, 67, 6.) |
[173] | Thang, H. V.; Vaculík, J.; Přech, J.; Kubů, M.; Čejka, J.; Nachtigall, P.; Bulánek, R.; Grajciar, L. Micropor. Mesopor. Mater. 2019, 282, 121. |
[174] | Thibault-Starzyk, F.; Stan, I.; Abelló, S.; Bonilla, A.; Thomas, K.; Fernandez, C.; Gilson, J. P.; Pérez-Ramírez, J. J. Catal. 2009, 264, 11. |
[175] | Yuan, M. T.; Zhao, D. Y.; Hao, Q. Q.; Luo, Q. X.; Zhang, J. B.; Chen, H. Y.; Sun, M.; Xu, L.; Ma, X. X. Ind. Eng. Chem. Res. 2020, 59, 16312. |
[176] | Cheung, P.; Bhan, A.; Sunley, G. J.; Iglesia, E. Angew. Chem. Int. Ed. 2006, 45, 1617. |
[177] | Cheung, P.; Bhan, A.; Sunley, G. J.; Law, D. J.; Iglesia, E. J. Catal. 2007, 245, 110. |
[178] | Lakiss, L.; Vicente, A.; Gilson, J. P.; Valtchev, V.; Mintova, S.; Vimont, A.; Bedard, R.; Abdo, S.; Bricker, J. ChemPhysChem 2020, 21, 1873. |
[179] | Weitkamp, J. Solid State Ionics 2000, 131, 175. |
[180] | Shi, J.; Wang, Y. D.; Yang, W. M.; Tang, Y.; Xie, Z. K. Chem. Soc. Rev. 2015, 44, 8877. |
[181] | Jin, S. Q.; Sun, H. M.; Yang, W. M. Chem. J. Chinese U. 2021, 42, 217. (in Chinese) |
[181] | ( 金少青, 孙洪敏, 杨为民, 高等学校化学学报, 2021, 42, 217.) |
[182] | Li, Y. N.; Jin, Z. S.; Yang, W. M. ZL 201110194985.2, 2014. (in Chinese) |
[182] | ( 李亚男, 金照生, 杨为民, ZL 201110194985.2, 2014.) |
[183] | Yang, W. M.; Wang, Z. D.; Sun, H. M.; Zhang, B.; Huan, M. Y.; Shen, Z. H.; Xue, M. W. US 10099935, 2018. |
[184] | Liu, J. T. Green Chemical, Metallurgical and Materials Engineering, Chemical Industry Press, Beijing, 2018. (in Chinese) |
[184] | ( 刘炯天, 绿色化工、 冶金、材料工程, 化学工业出版社, 北京, 2018) |
[185] | Liu, H. X.; Xie, Z. K.; Guan, H. B.; Fang, J. D.; Zhao, Y.; Zhang, H. M. ZL 200810043289. X, 2010. (in Chinese) |
[185] | ( 刘红星, 谢在库, 管洪波, 方敬东, 赵昱, 张惠明, ZL 200810043289. X, 2010.) |
/
〈 |
|
〉 |