综述

溶液法制备柔性压阻式传感器的研究进展

  • 王雨柔 ,
  • 王国琪 ,
  • 李想 ,
  • 尹君 ,
  • 朱剑
展开
  • 南开大学 材料科学与工程学院 天津 300350

王雨柔, 本科毕业于中国海洋大学材料科学与工程学院, 现为南开大学材料科学与工程学院硕士研究生. 导师朱剑教授, 主要研究方向为低维纳米材料的可控制备及其在柔性纳米电子器件中的应用.

尹君, 南开大学材料科学与工程学院讲师. 2019年于清华大学物理系获得博士学位, 后在南开大学任教, 研究方向包括二维电子材料和二维半导体, 以及基于二维材料的光电器件或光电探测器的机理研究.

朱剑, 南开大学材料科学与工程学院教授. 2013年于美国密歇根大学安娜堡分校的化学工程专业获得博士学位, 之后在西北大学材料科学与工程系进行博士后研究. 2017年入选国家级青年人才项目, 并受聘于南开大学材料科学与工程学院. 主要研究方向为纳米材料的合成和组装, 并探索其在高性能复合材料、信息器件及能源器件方面的应用.

收稿日期: 2021-08-31

  网络出版日期: 2021-12-29

基金资助

国家自然科学基金(51873088); 国家自然科学基金(12004195); 天津市自然科学基金(18JCZDJC38400); 天津市自然科学基金(20JCQNJC01820); 中国高等教育“111”项目(B18030); 南开大学中央高校基本科研业务费专项资金(63201061); 南开大学中央高校基本科研业务费专项资金(63211044)

Research Progress of Flexible Piezoresistive Sensors Prepared by Solution-Based Processing

  • Yurou Wang ,
  • Guoqi Wang ,
  • Xiang Li ,
  • Jun Yin ,
  • Jian Zhu
Expand
  • School of Materials Science and Engineering, Nankai University, Tianjin 300350, China

Received date: 2021-08-31

  Online published: 2021-12-29

Supported by

National Natural Science Foundation of China(51873088); National Natural Science Foundation of China(12004195); Natural Science Foundation of Tianjin, China(18JCZDJC38400); Natural Science Foundation of Tianjin, China(20JCQNJC01820); “111” Project of China’s Higher Education(B18030); Fundamental Research Funds for the Central Universities from Nankai University(63201061); Fundamental Research Funds for the Central Universities from Nankai University(63211044)

摘要

柔性压阻式传感器具有结构简单、易于制备、检测范围广等优势, 在可穿戴电子器件领域中扮演着非常重要的角色. 在制备柔性压阻式传感器的众多方法中, 溶液法由于操作简单、反应条件温和、材料的适用性广泛、易于规模化制备等优势, 成为极具发展前景的制备工艺. 在此基础上, 如何进一步提高柔性压阻式传感器的力学与电学性能也成为研究者们更加关注的话题. 另外, 制备图案化、微型化、规模化的传感器阵列为柔性压阻式传感器的应用范围拓展了新的道路. 本综述首先介绍了柔性压阻式传感器的工作原理与性能指标, 同时讨论了其性能指标对传感器在实际应用中的影响. 随后, 简单介绍了其构成材料, 并通过梳理近年来溶液法制备柔性传感器的研究成果, 选取了几种典型的溶液法制备方法进行重点介绍, 指出其具备的优势及目前存在的问题. 最后, 对溶液法制备柔性传感器的发展方向进行总结与展望.

本文引用格式

王雨柔 , 王国琪 , 李想 , 尹君 , 朱剑 . 溶液法制备柔性压阻式传感器的研究进展[J]. 化学学报, 2022 , 80(2) : 214 -228 . DOI: 10.6023/A21080414

Abstract

Flexible piezoresistive sensors have received great attention due to their simple structure, easy preparation, and wide range of detection, and played an indispensable role in the field of wearable electronics. Solution-based processing has emerged as one of the promising techniques for sensors with advantages of simple operation, mild reaction conditions, wide-material choices, and large-scale fabrication. Furthermore, the mechanical and electrical performances of these sensors have been continuously optimized by a range of approaches. In addition, it allows the patterning of large-area sensor arrays, which expand their practical applications. In this review, an overview of the working mechanism and performance metrics of piezoresistive sensors is provided with detailed explanations of their influences on real applications. Then, the materials used for sensors preparation are introduced. Subsequently, the recent research progress of flexible piezoresistive sensors fabricated by solution-based processing is summarized. Several important solution-based methods are compared to illustrate their advantages and challenges. This review is concluded with a prospect of future development in the field of flexible solution-processed sensors.

参考文献

[1]
Gao, Y. J.; Yu, L. T.; Yeo, J. C.; Lim, C. T. Adv. Mater. 2020, 32, 1902133.
[2]
Lim, H. R.; Kim, H. S.; Qazi, R.; Kwon, Y. T.; Jeong, J. W.; Yeo, W. H. Adv. Mater. 2020, 32, 1901924.
[3]
Wang, P. P.; Hu, M. M.; Wang, H.; Chen, Z.; Feng, Y. P.; Wang, J. Q.; Ling, W.; Huang, Y. Adv. Sci. 2020, 7, 2001116.
[4]
Ilami, M.; Bagheri, H.; Ahmed, R.; Skowronek, E. O.; Marvi, H. Adv. Mater. 2021, 33, 2003139.
[5]
Mishra, S.; Kim, Y. S.; Intarasirisawat, J.; Kwon, Y. T.; Lee, Y.; Mahmood, M.; Lim, H. R.; Herbert, R.; Yu, K. J.; Ang, C. S.; Yeo, W. H. Sci. Adv. 2020, 6, 1729.
[6]
Fu, X. Y.; Wang, L. L.; Zhao, L. J.; Yuan, Z. Y.; Zhang, Y. P.; Wang, D. Y.; Wang, D. P.; Li, J. Z.; Li, D. D.; Shulga, V.; Shen, G. Z.; Han, W. Adv. Funct. Mater. 2021, 31, 2010533.
[7]
Bian, Y. S.; Liu, K.; Guo, Y. L.; Liu, Y. Q. Acta Chim. Sinica 2020, 78, 848. (in Chinese)
[7]
( 边洋爽, 刘凯, 郭云龙, 刘云圻, 化学学报, 2020, 78, 848.)
[8]
Qian, X.; Su, M.; Li, F. Y.; Song, Y. L. Acta Chim. Sinica 2016, 74, 565. (in Chinese)
[8]
( 钱鑫, 苏萌, 李风煜, 宋延林, 化学学报, 2016, 74, 565.)
[9]
Xiang, L.; Zeng, X. W.; Xia, F.; Jin, W. L.; Liu, Y. D.; Hu, Y. F. ACS Nano 2020, 14, 6449.
[10]
Tu, J. B.; Torrente-Rodriguez, R. M.; Wang, M. Q.; Gao, W. Adv. Funct. Mater. 2020, 30, 1906713.
[11]
Xu, K. C.; Lu, Y. Y.; Takei, K. Adv. Funct. Mater. 2021, 31, 2007436.
[12]
Chen, P.; Sun, X. M.; Peng, H. S. Adv. Funct. Mater. 2020, 30, 2001287.
[13]
Son, D.; Lee, J.; Qiao, S.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W.; Yang, S.; Park, M.; Shin, J.; Do, K.; Lee, M.; Kang, K.; Hwang, C. S.; Lu, N. S.; Hyeon, T.; Kim, D. H. Nat. Nanotechnol. 2014, 9, 397.
[14]
Yang, T. T.; Xie, D.; Li, Z. H.; Zhu, H. W. Mater. Sci. Eng., R 2017, 115, 1.
[15]
Zhao, Y. C.; Gao, S. H.; Zhang, X.; Huo, W. X.; Xu, H.; Chen, C.; Li, J.; Xu, K. X.; Huang, X. Adv. Funct. Mater. 2020, 30, 2001553.
[16]
Su, Q.; Huang, X.; Zhang, Y. B.; Zou, Q. Microelectron. Eng. 2020, 231, 111370.
[17]
Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L. F.; Park, B.; Suh, K. Y.; Kim, T. I.; Choi, M. Nature 2014, 516, 222.
[18]
Yin, R. Y.; Wang, D. P.; Zhao, S. F.; Lou, Z.; Shen, G. Z. Adv. Funct. Mater. 2021, 31, 2008936.
[19]
Hou, C.; Xu, Z. J.; Qiu, W.; Wu, R. H.; Wang, Y. N.; Xu, Q. C.; Liu, X. Y.; Guo, W. X. Small 2019, 15, 1805084.
[20]
Xu, Z. J.; Li, W. F.; Huang, J. N.; Liu, Q.; Guo, X.; Guo, W. X.; Liu, X. Y. J. Mater. Chem. A 2018, 6, 19584.
[21]
Qiu, A. D.; Li, P. L.; Yang, Z. K.; Yao, Y.; Lee, I.; Ma, J. Adv. Funct. Mater. 2019, 29, 1806306.
[22]
Segev-Bar, M.; Haick, H. ACS Nano 2013, 7, 8366.
[23]
Gao, X. X.; Bian, G.; Zhu, J. J. Mater. Chem. C 2019, 7, 12835.
[24]
Wu, H. G.; Liu, Q.; Du, W. C.; Li, C.; Shi, G. Q. ACS Appl. Mater. Interfaces 2018, 10, 3895.
[25]
Liu, Z. Y.; Wang, X. T.; Qi, D. P.; Xu, C.; Yu, J. C.; Liu, Y. Q.; Jiang, Y.; Liedberg, B.; Chen, X. D. Adv. Mater. 2017, 29, 1603328.
[26]
Amjadi, M.; Turan, M.; Clementson, C. P.; Sitti, M. ACS Appl. Mater. Interfaces 2016, 8, 5618.
[27]
Zhang, H. J.; Han, W. Q.; Xu, K.; Zhang, Y.; Lu, Y. F.; Nie, Z. T.; Du, Y. H.; Zhu, J. X.; Huang, W. Nano Lett. 2020, 20, 3449.
[28]
Ruth, S. R. A.; Feig, V. R.; Tran, H.; Bao, Z. N. Adv. Funct. Mater. 2020, 30, 2003491.
[29]
Markvicka, E. J.; Bartlett, M. D.; Huang, X. N.; Majidi, C. Nat. Mater. 2018, 17, 618.
[30]
Xue, Z. G.; Song, H. L.; Rogers, J. A.; Zhang, Y. H.; Huang, Y. G. Adv. Mater. 2020, 32, 1902254.
[31]
Li, F. C.; Liu, Y.; Shi, X. L.; Li, H. P.; Wang, C. H.; Zhang, Q.; Ma, R. J.; Liang, J. J. Nano Lett. 2020, 20, 6176.
[32]
Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. ACS Nano 2014, 8, 5154.
[33]
Zhou, Y. J.; Zhan, P. F.; Ren, M. N.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Liu, C. T.; Shen, C. Y. ACS Appl. Mater. Interfaces 2019, 11, 7405.
[34]
Ma, C.; Xu, D.; Huang, Y. C.; Wang, P. Q.; Huang, J.; Zhou, J. Y.; Liu, W. F.; Li, S. T.; Huang, Y.; Duan, X. F. ACS Nano 2020, 14, 12866.
[35]
Lee, Y.; Ahn, J. H. ACS Nano 2020, 14, 1220.
[36]
Oh, J.; Yang, J. C.; Kim, J. O.; Park, H.; Kwon, S. Y.; Lee, S.; Sim, J. Y.; Oh, H. W.; Kim, J.; Park, S. ACS Nano 2018, 12, 7546.
[37]
Zhang, Y. P.; Wang, L. L.; Zhao, L. J.; Wang, K.; Zheng, Y. Q.; Yuan, Z. Y.; Wang, D. Y.; Fu, X. Y.; Shen, G. Z.; Han, W. Adv. Mater. 2021, 2007890.
[38]
Oh, J. Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H. C.; Kang, J.; Park, J.; Gu, X. D.; Mun, J.; Wang, N. G. J.; Yin, Y. K.; Cai, W.; Yun, Y. J.; Tok, J. B. H.; Bao, Z. N. Sci. Adv. 2019, 5, eaav3097.
[39]
Xu, K. C.; Fujita, Y.; Lu, Y. Y.; Honda, S.; Shiomi, M.; Arie, T.; Akita, S.; Takei, K. Adv. Mater. 2021, 33, 2008701.
[40]
Kim, D. C.; Shim, H. J.; Lee, W.; Koo, J. H.; Kim, D. H. Adv. Mater. 2020, 32, 1902743.
[41]
Wang, B. H.; Facchetti, A. Adv. Mater. 2019, 31, 1901408.
[42]
Ye, Y. H.; Zhang, Y. F.; Chen, Y.; Han, X. S.; Jiang, F. Adv. Funct. Mater. 2020, 30, 2003430.
[43]
Wu, Z. X.; Yang, X.; Wu, J. ACS Appl. Mater. Interfaces 2021, 13, 2128.
[44]
Feng, P. D.; Ji, H. J.; Zhang, L.; Luo, X.; Leng, X. S.; He, P.; Feng, H. H.; Zhang, J. H.; Ma, X.; Zhao, W. W. Nanotechnology 2019, 30, 185501.
[45]
Liu, H.; Chen, X. Y.; Zheng, Y. J.; Zhang, D. B.; Zhao, Y.; Wang, C. F.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Adv. Funct. Mater. 2021, 31, 2008006.
[46]
Zhou, X. Z.; Zhang, X.; Zhao, H. X.; Krishnan, B. P.; Cui, J. X. Adv. Funct. Mater. 2020, 30, 2003533.
[47]
Li, H.; Zhang, J. J.; Chen, J.; Luo, Z. B.; Zhang, J. Y.; Alhandarish, Y.; Liu, Q. H.; Tang, W.; Wang, L. Sci. Rep. 2020, 10, 4639.
[48]
Hempel, M.; Nezich, D.; Kong, J.; Hofmann, M. Nano Lett. 2012, 12, 5714.
[49]
Nie, B. B.; Li, X. M.; Shao, J. Y.; Li, X.; Tian, H. M.; Wang, D. R.; Zhang, Q.; Lu, B. H. ACS Appl. Mater. Interfaces 2017, 9, 40681.
[50]
Wang, S.; Fang, Y. L.; He, H.; Zhang, L.; Li, C. A.; Ouyang, J. Y. Adv. Funct. Mater. 2021, 31, 2007495.
[51]
Lee, J.; Kim, S.; Lee, J.; Yang, D.; Park, B. C.; Ryu, S.; Park, I. Nanoscale 2014, 6, 11932.
[52]
Liu, Z. Y.; Qi, D. P.; Guo, P. Z.; Liu, Y.; Zhu, B. W.; Yang, H.; Liu, Y. Q.; Li, B.; Zhang, C. G.; Yu, J. C.; Liedberg, B.; Chen, X. D. Adv. Mater. 2015, 27, 6230.
[53]
Lee, S.; Pharr, M. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 9251.
[54]
Cheng, Y. F.; Ma, Y. A.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y.; Wang, J. B.; Gao, Y. H. ACS Nano 2020, 14, 2145.
[55]
Wang, Z.; Kang, Y.; Zhao, S. C.; Zhu, J. Adv. Mater. 2020, 32, 1806480.
[56]
Richardson, J. J.; Bjornmalm, M.; Caruso, F. Science 2015, 348, aaa2491.
[57]
Vossmeyer, T.; Stolte, C.; Ijeh, M.; Kornowski, A.; Weller, H. Adv. Funct. Mater. 2008, 18, 1611.
[58]
An, H. S.; Habib, T.; Shah, S.; Gao, H. L.; Radovic, M.; Green, M. J.; Lutkenhaus, J. L. Sci. Adv. 2018, 4, aaq0118.
[59]
Mo, L. X.; Guo, Z. X.; Yang, L.; Zhang, Q. Q.; Fang, Y.; Xin, Z. Q.; Chen, Z.; Hu, K.; Han, L.; Li, L. H. Int. J. Mol. Sci. 2019, 20, 2124.
[60]
Song, Y.; Kim, D.; Kang, S.; Ko, Y.; Ko, J.; Huh, J.; Ko, Y.; Lee, S. W.; Cho, J. Adv. Funct. Mater. 2019, 29, 1806584.
[61]
Lee, S.; Song, Y.; Ko, Y.; Ko, Y.; Ko, J.; Kwon, C. H.; Huh, J.; Kim, S. W.; Yeom, B.; Cho, J. Adv. Mater. 2020, 32, 1906460.
[62]
Zhou, N. J.; Liu, C. Y.; Lewis, J. A.; Ham, D. Adv. Mater. 2017, 29, 1605198.
[63]
Li, J. M.; Xu, H.; Zhang, Z. A.; Hao, Y. F.; Wang, H. J.; Huang, X. Adv. Funct. Mater. 2020, 30, 1905024.
[64]
Sun, H. Y.; Han, Z. Y.; Willenbacher, N. ACS Appl. Mater. Interfaces 2019, 11, 38092.
[65]
Liu, H. D.; Zhang, H. J.; Han, W. Q.; Lin, H. J.; Li, R. Z.; Zhu, J. X.; Huang, W. Adv. Mater. 2021, 33, 2004782.
[66]
Liao, X. Q.; Liao, Q. L.; Yan, X. Q.; Liang, Q. J.; Si, H. N.; Li, M. H.; Wu, H. L.; Cao, S. Y.; Zhang, Y. Adv. Funct. Mater. 2015, 25, 2395.
[67]
Kang, Y.; Wang, G. Q.; Zhao, S. C.; Li, J. Y.; Di, L.; Feng, Y.; Yin, J.; Zhu, J. Small 2020, 16, 2004782.
[68]
Agarwala, S.; Goh, G. L.; Le, T. S. D.; An, J. N.; Peh, Z. K.; Yeong, W. Y.; Kim, Y. J. ACS Sens. 2019, 4, 218.
[69]
Jambhulkar, S.; Xu, W. H.; Ravichandran, D.; Prakash, J.; Kannan, A. N. M.; Song, K. Nano Lett. 2020, 20, 3199.
[70]
Zhou, N. J.; Bekenstein, Y.; Eisler, C. N.; Zhang, D. D.; Schwartzberg, A. M.; Yang, P. D.; Alivisatos, A. P.; Lewis, J. A. Sci. Adv. 2019, 5, aav8141.
[71]
Barmpakos, D.; Tsamis, C.; Kaltsas, G. Microelectron. Eng. 2020, 225, 111266.
[72]
Lee, H.; Lee, J.; Seong, B.; Jang, H. S.; Byun, D. Adv. Mater. Technol. 2018, 3, 1700228.
[73]
Kim, J. Y.; Ji, S.; Jung, S.; Ryu, B. H.; Kim, H. S.; Lee, S. S.; Choi, Y.; Jeong, S. Nanoscale 2017, 9, 11035.
[74]
Lee, J.; Pyo, S.; Kwon, D. S.; Jo, E.; Kim, W.; Kim, J. Small 2019, 15, e1805120.
[75]
Miao, W. N.; Wang, D. Y.; Liu, Z. M.; Tang, J. Y.; Zhu, Z. P.; Wang, C.; Liu, H.; Wen, L.; Zheng, S.; Tian, Y.; Jiang, L. ACS Nano 2019, 13, 3225.
[76]
Yan, C. Y.; Wang, J. X.; Kang, W. B.; Cui, M. Q.; Wang, X.; Foo, C. Y.; Chee, K. J.; Lee, P. S. Adv. Mater. 2014, 26, 2022.
[77]
Yu, L.; Parker, S.; Xuan, H. F.; Zhang, Y. J.; Jiang, S.; Tousi, M.; Manteghi, M.; Wang, A. B.; Jia, X. T. Adv. Funct. Mater. 2020, 30, 1908915.
[78]
Huang, S. Y.; Zhang, B. C.; Shao, Z. B.; He, L.; Zhang, Q.; Jie, J. S.; Zhang, X. H. Nano Lett. 2020, 20, 2478.
[79]
Huang, C. B.; Yao, Y. F.; Montes-Garcia, V.; Stoeckel, M. A.; Von Holst, M.; Ciesielski, A.; Samori, P. Small 2021, 17, e2007593.
[80]
Hwang, H.; Kim, Y.; Park, J. H.; Jeong, U. Adv. Funct. Mater. 2020, 30, 1908514.
[81]
Li, X.; Fan, Y. J.; Li, H. Y.; Cao, J. W.; Xiao, Y. C.; Wang, Y.; Liang, F.; Wang, H. L.; Jiang, Y.; Wang, Z. L.; Zhu, G. ACS Nano 2020, 14, 9605.
[82]
Han, S. T.; Peng, H. Y.; Sun, Q. J.; Venkatesh, S.; Chung, K. S.; Lau, S. C.; Zhou, Y.; Roy, V. A. L. Adv. Mater. 2017, 29, 1700375.
[83]
Wang, C. Y.; Xia, K. L.; Wang, H. M.; Liang, X. P.; Yin, Z.; Zhang, Y. Y. Adv. Mater. 2019, 31, 1801072.
[84]
Li, S.; Zhang, Y.; Wang, Y. L.; Xia, K. L.; Yin, Z.; Wang, H. M.; Zhang, M. C.; Liang, X. P.; Lu, H. J.; Zhu, M. J.; Wang, H. M.; Shen, X. Y.; Zhang, Y. Y. InfoMat 2020, 2, 184.
[85]
Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Nature Mater. 2010, 9, 859.
[86]
Pang, C.; Lee, G. Y.; Kim, T.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. Nature Mater. 2012, 11, 795.
文章导航

/