金属-有机框架HKUST-1膜在气体分离中研究进展※
收稿日期: 2021-12-05
网络出版日期: 2022-01-12
基金资助
国家自然科学基金(21872148); 中国科学院青年创新促进会(2018339); 中国福建光电信息科学与技术创新实验室(闽都创新实验室)基金(2021ZR131)
Research Progresses of Metal-organic Framework HKUST-1-Based Membranes in Gas Separations※
Received date: 2021-12-05
Online published: 2022-01-12
Supported by
National Natural Science Foundation of China(21872148); Youth Innovation Promotion Association, CAS(2018339); Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China(2021ZR131)
发展高效、绿色且节能的物质分离与纯化技术具有重要意义, 气体分离更是在工业、能源、医疗及科技等领域有着广泛的应用. 传统的聚合物膜在实现高效气体分离方面还面临许多挑战, 新型分离膜材料的开发是当前研究热点和难点. 金属-有机框架(Metal-Organic Frameworks, MOFs)材料作为一种新兴多孔配位聚合物, 由于其具有独特可设计的拓扑结构以及可调节的功能而受到科学家们的广泛关注. 为了克服粉体或块体MOFs很难被高效用于气体分离的难题, 开发可用于分离的MOFs膜材料是一项具有重要意义且具有挑战性的任务. HKUST-1作为一种代表性的MOFs材料, 由于其结构稳定且原料经济并具有多级孔径的结构, 常被用作制备成膜材料用于气体分离的研究和实际应用. 总结了近十年HKUST-1膜的制备方法及其气体分离性能的研究进展, 并对这个方向的研究提出了自己的看法和展望.
李崇 , 李娜 , 常立美 , 谷志刚 , 张健 . 金属-有机框架HKUST-1膜在气体分离中研究进展※[J]. 化学学报, 2022 , 80(3) : 340 -358 . DOI: 10.6023/A21120545
The development of high-efficiency, green and energy-saving material separation and purification technology is of great significance, and gas separation has a wide range of applications in the fields of industry, energy, medical treatment and technology. Since traditional polymer membranes still face many challenges in achieving high-efficient gas separation, the development of new separation membrane materials has become the current hotspot and difficult issue. As an emerging porous coordination polymer, metal-organic frameworks (MOFs) materials have attracted great attention due to their unique, designable topological structures and tunable functionalities. In order to overcome the problem that bulk or powder MOFs are difficult to be used for gas separation efficiently, it is of great significance and a challenging task to develop MOFs membranes for separation. As a representative MOF material, MOF HKUST-1 is widely used to prepare membranes for gas separation due to its advantages of high stability, economic raw material and hierarchical pore structure. The preparation methods and gas separation performances of the HKUST-1 membrane in the past ten years are summarized, and some viewpoints and the research prospect on this research area are described.
[1] | Henis, J. M. S. Commercial and Practical Aspects of Gas Separation Membranes, Chap. 10, Eds.: Paul, D. R.; Yampol'skii, Y. P. CRC Press, Boca Raton, Florida, 1994, p. 72. |
[2] | Baker, R. W. Ind. Eng. Chem. Res. 2002, 41, 1393. |
[3] | Yao, J.; Wang, H. Chem. Soc. Rev. 2014, 43, 4470. |
[4] | Norwell, M. Handbook of Compressed Gases, Kluwer Academic Publishers, New York, 1999, pp. 7-9. |
[5] | Ruthven, D. M.; Shamsuzzaman, F.; Knaebel, K. S. Pressure Swing Adsorption, VCH Publishers, Inc., Florida, 1993, pp. 1-7. |
[6] | Hedin, N.; Andersson, L.; Bergström, L.; Yan, J. Appl. Energy 2013, 104, 418. |
[7] | Aaron, D.; Tsouris, C. Sep. Sci. Technol. 2011, 40, 321. |
[8] | Baker, R. W.; Lokhandwala, K. Ind. Eng. Chem. Res. 2008, 47, 2109. |
[9] | Baker, R. W. Membrane Technology and Applications, John Wiley and Sons Ltd, California, 2012, pp. 325-326. |
[10] | Perez, E. V.; Karunaweera, C.; Musselman, I. H.; Balkus, K. J. Jr.; Ferraris, J. P. Processes 2016, 4, 1. |
[11] | Tian, Y.; Liang, J.; Shen, Q.; Wang, Z.; Jin, J. Membr. Sci. Technol. 2019, 39, 125. |
[12] | Wu, C. H.; Zhang, K. X.; Wang, H. L.; Fan, Y. Q.; Zhang, S. W.; He, S. F.; Wang, F.; Tao, Y.; Zhao, X. W.; Zhang, Y. B.; Ma, Y. H.; Lee, Y. J.; Li, T. J. Am. Chem. Soc. 2020, 142, 18503. |
[13] | Baker, R. W.; Low, B. T. Macromolecules 2014, 47, 6999. |
[14] | Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Nano Res. 2021, 14, 1. |
[15] | Liu, Y.; Ban, Y.; Yang, W. Adv. Mater. 2017, 29, 1606949. |
[16] | Robeson, L. M. J. Membr. Sci 1991, 62, 165. |
[17] | Robeson, L. M.; Burgoyne, W. F.; Langsam, M.; Savoca, A. C.; Tien, C. F. Polymer 1994, 35, 4970. |
[18] | Freeman, B. D. Macromolecules 1999, 32, 375. |
[19] | Robeson, L. M. J. Membr. Sci 2008, 320, 390. |
[20] | Wang, S.; Tian, Z.; Feng, J.; Wu, H.; Li, Y.; Liu, Y.; Li, X.; Xin, Q.; Jiang, Z. J. Membr. Sci. 2015, 473, 310. |
[21] | Zacher, D.; Shekhah, O.; Woll, C.; Fischer, R. A. Chem. Soc. Rev. 2009, 38, 1418. |
[22] | Shekhah, O.; Liu, J.; Fischer, R. A.; Woll, C. Chem. Soc. Rev. 2011, 40, 1081. |
[23] | Lin, R. B.; Zhang, Z. J.; Chen, B. L. Acc. Chem. Res. 2021, 54, 3362. |
[24] | Hosono, N.; Uemura, T. Acc. Chem. Res. 2021, 54, 3593. |
[25] | Saraci, F.; Quezada-Novoa, V.; Donnarumma, P. R.; Howarth, A. J. Chem. Soc. Rev. 2020, 49, 7949. |
[26] | Feng, L.; Wang, K. Y.; Lv, X. L.; Yan, T. H.; Zhou, H. C. Natl. Sci. Rev. 2020, 7, 1743. |
[27] | Zhang, J.; Kosaka, W.; Kitagawa, Y.; Miyasaka, H. Nat. Chem. 2021, 13, 191. |
[28] | Xu, M. M.; Chen, Q.; Xie, L. H.; Li, J. R. Coord. Chem. Rev. 2020, 421, 213421. |
[29] | Yoo, D. K.; Woo, H. C.; Jhung, S. H. Coord. Chem. Rev. 2020, 422, 213477. |
[30] | Yuan, N.; Zhang, X. L.; Wang, L. S. Coord. Chem. Rev. 2020, 421, 213442. |
[31] | Cui, Z. M.; Fan, T.; Chen, L. Y.; Fang, R. Q.; Li, C. M.; Li, Y. W. Sci. China. Chem. 2021, 64, 109. |
[32] | Feng, L.; Wang, K. Y.; Day, G. S.; Ryder, M. R.; Zhou, H. C. Chem. Rev. 2020, 120, 13087. |
[33] | Terzopoulou, A.; Nicholas, J. D.; Chen, X. Z.; Nelson, B. J.; Pane, S.; Puigmarti-Luis, J. Chem. Rev. 2020, 120, 11175. |
[34] | Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Chem. Rev. 2020, 120, 12089. |
[35] | Zhang, X.; Chen, Z. J.; Liu, X. Y.; Hanna, S. L.; Wang, X. J.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O. K. Chem. Soc. Rev. 2020, 49, 7406. |
[36] | Chong, S.; Lee, S.; Kim, B.; Kim, J. Coord. Chem. Rev. 2020, 423, 213487. |
[37] | Daglar, H.; Keskin, S. Coord. Chem. Rev. 2020, 422, 213470. |
[38] | Hackler, R. A.; Pandharkar, R.; Ferrandon, M. S.; Kim, I. S.; Vermeulen, N. A.; Gallington, L. C.; Chapman, K. W.; Farha, O. K.; Cramer, C. J.; Sauer, J.; Gagliardi, L.; Martinson, A. B. F.; Delferro, M. J. Am. Chem. Soc. 2020, 142, 20380. |
[39] | Rowsell, J. L. C.; Yaghi, O. M.; Chen, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S. Angew. Chem., nt. Ed. 2005, 44, 4647. |
[40] | Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127. |
[41] | Zhang, Y.; Lv, L. S.; Li, W. J.; Zhang, Y.; Lu, N.; Han, X. J. Chin. Chem. Soc. 2021, 68, 610. |
[42] | Aniruddha, R.; Sreedhar, I.; Reddy, B. M. J. CO2 Util 2020, 42, 101297. |
[43] | Cui, H.; Ye, Y. X.; Liu, T.; Alothman, Z. A.; Alduhaish, O.; Lin, R. B.; Chen, B. L. Inorg. Chem. 2020, 59, 17143. |
[44] | Bernardo, P.; Drioli, E.; Golemme, G. Ind. Eng. Chem. Res. 2009, 48, 4638. |
[45] | Ursueguia, D.; Diaz, E.; Vega, A.; Ordonez, S. Sep. Purif. Technol. 2020, 251, 117374. |
[46] | Wang, X.; Zhang, F. F.; Li, S. Y.; Chen, Y. S.; Wang, Z.; Hou, X. Y.; Chen, X. L.; Tang, L.; Yue, E. L.; Wang, J. J. J. Solid State Chem. 2020, 292, 121670. |
[47] | Li, G.-P.; Li, Z.-Z.; Xie, H.-F.; Fu, Y.-L.; Wang, Y.-Y. Chin. J. Struc. Chem. 2021, 40, 1047. (in Chinese) |
[47] | 李高鹏, 李贞贞, 谢红芳, 付云龙, 王尧宇, 结构化学, 2021, 40, 1047.) |
[48] | Li, X.; Yan, B.; Huang, W.; Fu, L.; Sun, X.; Lv, A. Acta Chim. Sinica 2021, 79, 459.. (in Chinese) |
[48] | 李旭飞, 闫保有, 黄维秋, 浮历沛, 孙宪航, 吕爱华, 化学学报, 2021, 79, 459.) |
[49] | Lyu, L.; Zhao, Y.; Wei, Y.; Wang, H. Acta Chim. Sinica 2021, 79, 869. (in Chinese) |
[49] | (吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.) |
[50] | Wu, X.-L.; Li, Z.-J.; Tang, F.-D.; Qian, N.; Chu, X.-X.; Liu, W. Chin. J. Struc. Chem. 2021, 40, 85. (in Chinese) |
[50] | (吴小玲, 李子建, 唐方东, 钱楠, 楚鑫新, 刘卫, 结构化学, 2021, 40, 85.) |
[51] | Zhang, H.; Li, G.; Zhang, K.; Liao, C. Acta Chim. Sinica 2017, 75, 841. (in Chinese) |
[51] | (张贺, 李国良, 张可刚, 廖春阳, 化学学报, 2017, 75, 841.) |
[52] | Park, Y. K.; Choi, S. B.; Kim, H.; Kim, K.; Won, B.-H.; Choi, K.; Choi, J.-S.; Ahn, W.-S.; Won, N.; Kim, S.; Jung, D. H.; Choi, S.-H.; Kim, G.-H.; Cha, S.-S.; Jhon, Y. H.; Yang, J. K.; Kim, J. Angew. Chem., nt. Ed. 2007, 46, 8230. |
[53] | Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regí, M. A.; Sebban, M.; Taulelle, F.; Férey, G. R. J. Am. Chem. Soc. 2008, 130, 6774. |
[54] | Férey, G. Chem. Soc. Rev. 2008, 37, 191. |
[55] | Serre, C.; Millange, F.; Surblé, S.; Férey, G. Angew. Chem., nt. Ed. 2004, 43, 6285. |
[56] | Yang, T.; Cui, Y.; Chen, H.; Li, W. Acta Chim. Sinica 2017, 75, 339. (in Chinese) |
[56] | (杨涛, 崔亚男, 陈怀银, 李伟华, 化学学报, 2017, 75, 339.) |
[57] | Hromadka, J.; Tokay, B.; Correia, R.; Morgan, S. P.; Korposh, S. Sens. Actuators, B 2018, 255, 2483. |
[58] | Hu, Z.; Tao, C.-A.; Liu, H.; Zou, X.; Zhu, H.; Wang, J. J. Mater. Chem. A 2014, 2, 14222. |
[59] | Szilagyi, P. A.; Westerwaal, R. J.; van de Krol, R.; Geerlings, H.; Dam, B. J. Mater. Chem. C 2013, 1, 8146. |
[60] | Liu, J.; Redel, E.; Walheim, S.; Wang, Z.; Oberst, V.; Liu, J.; Heissler, S.; Welle, A.; Moosmann, M.; Scherer, T.; Bruns, M.; Gliemann, H.; Woell, C. Chem. Mater. 2015, 27, 1991. |
[61] | Lu, G.; Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 7832. |
[62] | Gao, Z.; Wang, C.; Li, J.; Zhu, Y.; Zhang, Z.; Hu, W. Acta Phys.-Chim. Sin. 2020, 37, 2010025. (in Chinese) |
[62] | (高增强, 王聪勇, 李俊俊, 朱亚廷, 张志成, 胡文平, 物理化学学报, 2020, 37, 2010025.) |
[63] | Huang, G.; Chen, Y.; Jiang, H. Acta Chim. Sinica 2016, 74, 113. (in Chinese) |
[63] | (黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.) |
[64] | Schlichte, K.; Kratzke, T.; Kaskel, S. Microporous Mesoporous Mater. 2004, 73, 81. |
[65] | Zhao, M.; Deng, K.; He, L.; Liu, Y.; Li, G.; Zhao, H.; Tang, Z. J. Am. Chem. Soc. 2014, 136, 1738. |
[66] | Martis, M.; Mori, K.; Fujiwara, K.; Ahn, W.-S.; Yamashita, H. J. Phys. Chem. C 2013, 117, 22805. |
[67] | Nguyen, L. T. L.; Le, K. K. A.; Truong, H. X.; Phan, N. T. S. Catal. Sci. Technol. 2012, 2, 521. |
[68] | Fei, H.; Cohen, S. M. J. Am. Chem. Soc. 2015, 137, 2191. |
[69] | Nasalevich, M. A.; van der Veen, M.; Kapteijn, F.; Gascon, J. CrystEngComm 2014, 16, 4919. |
[70] | Pullen, S.; Fei, H.; Orthaber, A.; Cohen, S. M.; Ott, S. J. Am. Chem. Soc. 2013, 135, 16997. |
[71] | Nguyen, T. N.; Kampouri, S.; Valizadeh, B.; Luo, W.; Ongari, D.; Planes, O. M.; Zuttel, A.; Smit, B.; Stylianou, K. C. ACS Appl. Mater. Interfaces 2018, 10, 30035. |
[72] | Maina, J. W.; Schutz, J. A.; Grundy, L.; Des Ligneris, E.; Yi, Z.; Kong, L.; Pozo-Gonzalo, C.; Ionescu, M.; Dumee, L. F. ACS Appl. Mater. Interfaces 2017, 9, 35010. |
[73] | Ohara, H.; Yamamoto, S.; Kuzuhara, D.; Koganezawa, T.; Oikawa, H.; Mitsuishi, M. ACS Appl. Mater. Interfaces 2020, 12, 50784. |
[74] | Santos, J. C. C.; Pramudya, Y.; Krstic, M.; Chen, D. H.; Neumeier, B. L.; Feldmann, C.; Wenzel, W.; Redel, E. ACS Appl. Mater. Interfaces 2020, 12, 52166. |
[75] | Bo, R. H.; Taheri, M.; Liu, B. R.; Ricco, R.; Chen, H. J.; Amenitsch, H.; Fusco, Z.; Tsuzuki, T.; Yu, G. H.; Ameloot, R.; Falcaro, P.; Tricoli, A. Adv. Sci. 2020, 7, 2002368. |
[76] | Liu, Y. X.; Wei, Y. N.; Liu, M. H.; Bai, Y. C.; Wang, X. Y.; Shang, S. C.; Chen, J. Y.; Liu, Y. Q. Angew. Chem., nt. Ed. 2021, 60, 2887. |
[77] | Sun, S. J.; Xiao, Y. L.; He, L. Q.; Tong, Y. X.; Liu, D. X.; Zhang, J. Y. ChemistrySelect 2020, 5, 13855. |
[78] | Wang, D.-W.; Gu, Z.-G.; Zhang, J. Acta Phys. Sin. 2020, 69, 126801. (in Chinese) |
[78] | (王大为, 谷志刚, 张健, 物理学报, 2020, 69, 126801.) |
[79] | Shah, M.; McCarthy, M. C.; Sachdeva, S.; Lee, A. K.; Jeong, H.-K. Ind. Eng. Chem. Res. 2012, 51, 2179. |
[80] | Kang, Z.; Fan, L.; Sun, D. J. Mater. Chem. A 2017, 5, 10073. |
[81] | Shekhah, O.; Chernikova, V.; Belmabkhout, Y.; Eddaoudi, M. Crystals 2018, 8, 412. |
[82] | Shi, Y.; Liang, B.; Lin, R.-B.; Zhang, C.; Chen, B. Trends. Chem. 2020, 2, 254. |
[83] | Hou, D.; Liu, D.; Yang, Q.; Zhong, C. Chem. Ind. Eng. Prog. 2015, 34, 2907. |
[84] | Ma, L.; Svec, F.; Lv, Y.; Tan, T. Chem.-Asian J. 2019, 14, 3502. |
[85] | Bi, X. Y.; Zhang, Y. A.; Zhang, F.; Zhang, S. X.; Wang, Z. G.; Jin, J. ACS Appl. Mater. Interfaces 2020, 12, 49101. |
[86] | Qiu, S.; Xue, M.; Zhu, G. Chem. Soc. Rev. 2014, 43, 6116. |
[87] | Shah, M.; McCarthy, M. C.; Sachdeva, S.; Lee, A. K.; Jeong, H.-K. Ind. Eng. Chem. Res. 2012, 51, 2179. |
[88] | Chui, S. S.; Lo, S. M.; Charmant, J. P.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148. |
[89] | Wehring, M.; Gascon, J.; Dubbeldam, D.; Kapteijn, F.; Snurr, R. Q.; Stallmach, F. J. Phys. Chem. C 2010, 114, 10527. |
[90] | Chen, Y.; Mu, X.; Lester, E.; Wu, T. Prog. Nat. Sci.: Mater. Int. 2018, 28, 584. |
[91] | Al-Janabi, N.; Hill, P.; Torrente-Murciano, L.; Garforth, A.; Gorgojo, P.; Siperstein, F.; Fan, X. Chem. Eng. J. 2015, 281, 669. |
[92] | Raganati, F.; Gargiulo, V.; Ammendola, P.; Alfe, M.; Chirone, R. Chem. Eng. J. 2014, 239, 75. |
[93] | Gu, Z.-G.; Heinke, L.; Wöll, C.; Neumann, T.; Wenzel, W.; Li, Q.; Fink, K.; Gordan, O. D.; Zahn, D. R. T. Appl. Phys. Lett. 2015, 107, 183301. |
[94] | Anand, B.; Younis, S. A.; Szulejko, J. E.; Kim, K. H.; Zhang, W. J. Cleaner Prod. 2020, 275, 122359. |
[95] | Babal, A. S.; Tan, J. C. J. Mater. Chem. C 2020, 8, 12886. |
[96] | Lestari, W. W.; Irwinsyah; Saraswati, T. E.; Krisnandi, Y. K.; Arrozi, U. S. F.; Heraldy, E.; Kadja, G. T. M. Open Chem. 2019, 17, 1279. |
[97] | Zhang, Y.; Zhang, Y.; Wang, X.; Yu, J.; Din, B. ACS Appl. Mater. Interfaces 2018, 10, 34802. |
[98] | Riley, B. J.; Chong, S.; Kuang, W.; Varga, T.; Helal, A. S.; Galanek, M.; Li, J.; Nelson, Z. J.; Thallapally, P. K. ACS Appl. Mater. Interfaces 2020, 12, 45342. |
[99] | Ye, S.; Jiang, X.; Ruan, L.-W.; Liu, B.; Wang, Y.-M.; Zhu, J.-F.; Qiu, L.-G. Microporous Mesoporous Mater. 2013, 179, 191. |
[100] | Alvarez, J. R.; Sanchez-Gonzalez, E.; Perez, E.; Schneider-Revueltas, E.; Martinez, A.; Tejeda-Cruz, A.; Islas-Jacome, A.; Gonzalez-Zamora, E.; Ibarra, I. A. Dalton Trans. 2017, 46, 9192. |
[101] | Di Credico, B.; Redaelli, M.; Bellardita, M.; Calamante, M.; Cepek, C.; Cobani, E.; D'Arienzo, M.; Evangelisti, C.; Marelli, M.; Moret, M.; Palmisano, L.; Scotti, R. Catalysts 2018, 8, 1. |
[102] | Chuah, C. Y.; Goh, K.; Bae, T.-H. J. Phys. Chem. C 2017, 121, 6748. |
[103] | Xu, F.; Lv, D. F.; Xu, W. C.; Yang, X. X.; Sun, H. L.; Yuan, W. B.; Yan, J.; Chen, X. AIP Adv. 2020, 10, 125311. |
[104] | Panella, B.; Hirscher, M.; Pütter, H.; Müller, U. Adv. Funct. Mater. 2006, 16, 520. |
[105] | Vishnyakov, A.; Ravikovitch, P. I.; Neimark, A. V.; Bülow, M.; Wang, Q. M. Nano Lett. 2003, 3, 713. |
[106] | Gu, Z.-G.; Fu, H.; Neumann, T.; Xu, Z.-X.; Fu, W.-Q.; Wenzel, W.; Zhang, L.; Zhang, J.; Wöll, C. ACS Nano 2015, 10, 977. |
[107] | Sun, Y.; Yang, F.; Wei, Q.; Wang, N.; Qin, X.; Zhang, S.; Wang, B.; Nie, Z.; Ji, S.; Yan, H.; Li, J.-R. Adv. Mater. 2016, 28, 2374. |
[108] | Gu, Z.-G.; Li, D.-J.; Zheng, C.; Kang, Y.; Wöll, C.; Zhang, J. Angew. Chem., nt. Ed. 2017, 56, 6853. |
[109] | Delen, G.; Monai, M.; Meirer, F.; Weckhuysen, B. M. Angew. Chem., nt. Ed. 2021, 60, 1620. |
[110] | Lu, C.; Wang, G.; Wang, K.; Guo, D.; Bai, M.; Wang, Y. Materials 2018, 11, 1207. |
[111] | Noh, S.-J.; Kwon, H. T.; Kim, J. J. Nanosci. Nanotechnol. 2013, 13, 5671. |
[112] | Guo, Y.; Mao, Y.; Hu, P.; Ying, Y.; Peng, X. ChemistrySelect 2016, 1, 108. |
[113] | Mao, Y.; Cao, W.; Li, J.; Sun, L.; Peng, X. Chem.-Eur. J. 2013, 19, 11883. |
[114] | Nan, J.; Dong, X.; Wang, W.; Jin, W.; Xu, N. Langmuir 2011, 27, 4309. |
[115] | Guerrero, V. V.; Yoo, Y.; McCarthy, M. C.; Jeong, H.-K. J. Mater. Chem. 2010, 20, 3938. |
[116] | Shah, M. N.; Gonzalez, M. A.; McCarthy, M. C.; Jeong, H.-K. Langmuir 2013, 29, 7896. |
[117] | Ranjan, R.; Tsapatsis, M. Chem. Mater. 2009, 21, 4920. |
[118] | Zhu, H.; Liu, H.; Zhitomirsky, I.; Zhu, S. Mater. Lett. 2015, 142, 19. |
[119] | Zhou, S.; Wei, Y.; Zhuang, L.; Ding, L.-X.; Wang, H. J. Mater. Chem. A 2017, 5, 1948. |
[120] | Guo, H.; Zhu, G.; Hewitt, I. J.; Qiu, S. J. Am. Chem. Soc. 2009, 131, 1646. |
[121] | Kang, Z.; Wang, S.; Fan, L.; Zhang, M.; Kang, W.; Pang, J.; Du, X.; Guo, H.; Wang, R.; Sun, D. Commun. Chem. 2018, 1, 1. |
[122] | Dahanayaka, M.; Babicheva, R.; Chen, Z.; Law, A. W.-K.; Wu, M. S.; Zhou, K. Appl. Surf. Sci. 2020, 503, 144198. |
[123] | Zhou, S.; Zou, X.; Sun, F.; Zhang, F.; Fan, S.; Zhao, H.; Schiestel, T.; Zhu, G. J. Mater. Chem. 2012, 22, 10322. |
[124] | Mao, Y.; Li, J.; Cao, W.; Ying, Y.; Sun, L.; Peng, X. ACS Appl. Mater. Interfaces 2014, 6, 4473. |
[125] | Li, W.; Meng, Q.; Zhang, C.; Zhang, G. Chem.-Eur. J. 2015, 21, 7224. |
[126] | Gascon, J.; Aguado, S.; Kapteijn, F. Microporous Mesoporous Mater. 2008, 113, 132. |
[127] | Wu, Y.-N.; Li, F.; Liu, H.; Zhu, W.; Teng, M.; Jiang, Y.; Li, W.; Xu, D.; He, D.; Hannam, P.; Li, G. J. Mater. Chem. 2012, 22, 16971. |
[128] | Mao, Y.; Shi, L.; Huang, H.; Cao, W.; Li, J.; Sun, L.; Jin, X.; Peng, X. Chem. Commun. 2013, 49, 5666. |
[129] | Zhu, H.; Zhang, Q.; Zhu, S. ACS Appl. Mater. Interfaces 2016, 8, 17395. |
[130] | Campbell, J.; Szekely, G.; Davies, R. P.; Braddock, D. C.; Livingston, A. G. J. Mater. Chem. A 2014, 2, 9260. |
[131] | Fu, J.; Ben, T.; Qiu, S. Acta Phys.-Chim. Sin. 2020, 36, 1901079. (in Chinese) |
[131] | (付静茹, 贲腾, 裘式纶, 物理化学学报, 2020, 36, 1901079.) |
[132] | Campbell, J.; Burgal, J. D. S.; Szekely, G.; Davies, R. P.; Braddock, D. C.; Livingston, A. J. Membr. Sci. 2016, 503, 166. |
[133] | Zhou, S.; Wei, Y.; Zhuang, L.; Ding, L.-X.; Wang, H. J. Mater. Chem. A 2017, 5, 1948. |
[134] | Meng, C. F.; Chen, H. T.; Hu, P. F.; Yuan, A. H. ChemistrySelect 2020, 5, 15049. |
[135] | Zhao, F.; Su, C. H.; Yang, W. X.; Han, Y.; Luo, X. L.; Li, C. H.; Tang, W. Z.; Yue, T. L.; Li, Z. H. Appl. Surf. Sci. 2020, 527, 146862. |
[136] | Yang, K.; Ban, Y. J.; Guo, A.; Zhao, M.; Zhou, Y. W.; Cao, N.; Yang, W. S. J. Membr. Sci. 2020, 611, 118419. |
[137] | Chen, K.; Li, P.; Zhang, H. Y.; Sun, H. X.; Yang, X. J.; Yao, D. H.; Pang, X. J.; Han, X. L.; Niu, Q. J. Sep. Purif. Technol. 2020, 251, 117387. |
[138] | Shi, Z. L.; Jiao, J. C.; Han, Q. X.; Xiao, Y.; Huang, L. K.; Li, M. X. Mol. Catal. 2020, 496, 111190. |
[139] | Sun, S.; Huang, L.; Xiao, H.; Shuai, Q.; Hu, S. Talanta 2019, 202, 145. |
[140] | Ben, T.; Lu, C.; Pei, C.; Xu, S.; Qiu, S. Chem.-Eur. J. 2012, 18, 10250. |
[141] | Nagaraju, D.; Bhagat, D. G.; Banerjee, R.; Kharul, U. K. J. Mater. Chem. A 2013, 1, 8828. |
[142] | Mao, Y.; Su, B.; Cao, W.; Li, J.; Ying, Y.; Ying, W.; Hou, Y.; Sun, L.; Peng, X. ACS Appl. Mater. Interfaces 2014, 6, 15676. |
[143] | Hou, J.; Sutrisna, P. D.; Wang, T.; Gao, S.; Li, Q.; Zhou, C.; Sun, S.; Yang, H. C.; Wei, F.; Ruggiero, M. T.; Zeitler, J. A.; Cheetham, A. K.; Liang, K.; Chen, V. ACS Appl. Mater. Interfaces 2019, 11, 5570. |
[144] | Venna, S. R.; Carreon, M. A. J. Am. Chem. Soc. 2010, 132, 76. |
[145] | Li, T.; Zhang, Z.; Han, Z. J. Inorg. Mater. 2021, 36, 592. |
[146] | Rangnekar, N.; Mittal, N.; Elyassi, B.; Caro, J.; Tsapatsis, M. Chem. Soc. Rev. 2015, 44, 7128. |
[147] | Wu, X. K.; Yang, Y. W.; Lu, X. F.; Wang, Z. B. J. Membr. Sci. 2020, 613, 118518. |
[148] | Yeo, Z. Y.; Chai, S.-P.; Zhu, P. W.; Mohamed, A. R. RSC Adv. 2014, 4, 54322. |
[149] | Liu, X.; Yue, T.; Qi, K.; Qiu, Y.; Xia, B. Y.; Guo, X. Chin. Chem. Lett. 2020, 31, 2189. |
[150] | Gu, Z.-G.; Bürck, J.; Bihlmeier, A.; Liu, J.; Shekhah, O.; Weidler, P. G.; Azucena, C.; Wang, Z.; Heissler, S.; Gliemann, H.; Klopper, W.; Ulrich, A. S.; Wöll, C. Chem.-Eur. J. 2014, 20, 9879. |
[151] | Gu, Z.-G.; Zhang, J. Coord. Chem. Rev. 2019, 378, 513. |
[152] | Zhuang, J.-L.; Terfort, A.; Woell, C. Coord. Chem. Rev. 2016, 307, 391. |
[153] | Gu, Z. G.; Chen, S. C.; Fu, W. Q.; Zheng, Q. D.; Zhang, J. ACS Appl. Mater. Interfaces 2017, 9, 7259. |
[154] | Heinke, L.; Woll, C. Adv. Mater. 2019, 31, 1806324. |
[155] | Yamada, T.; Otsubo, K.; Makiura, R.; Kitagawa, H. Chem. Soc. Rev. 2013, 42, 6655. |
[156] | Gu, Z.-G.; Fu, W.-Q.; Wu, X.; Zhang, J. Chem. Commun. 2016, 52, 772. |
[157] | Ahlenhoff, K.; Koch, S.; Emmrich, D.; Dalpke, R.; Goelzhaeuser, A.; Swiderek, P. Phys. Chem. Chem. Phys. 2019, 21, 2351. |
[158] | Begum, S.; Hassan, Z.; Braese, S.; Woell, C.; Tsotsalas, M. Acc. Chem. Res. 2019, 52, 1598. |
[159] | Elrasheedy, A.; Nady, N.; Bassyouni, M.; El-Shazly, A. Membranes 2019, 9, 88. |
[160] | Li, W. Prog. Mater. Sci. 2019, 100, 21. |
[161] | Yuan, S.; Li, X.; Zhu, J.; Zhang, G.; Van Puyvelde, P.; Van der Bruggen, B. Chem. Soc. Rev. 2019, 48, 2665. |
[162] | Chen, D. H.; Sedykh, A. E.; Gomez, G. E.; Neumeier, B. L.; Santos, J. C. C.; Gvilava, V.; Maile, R.; Feldmann, C.; Woll, C.; Janiak, C.; Muller-Buschbaum, K.; Redel, E. Adv. Mater. Interfaces 2020, 7, 2000929. |
[163] | Haldar, R.; Jakoby, M.; Kozlowska, M.; Khan, M. R.; Chen, H. Y.; Pramudya, Y.; Richards, B. S.; Heinke, L.; Wenzel, W.; Odobel, F.; Diring, S.; Howard, I. A.; Lemmer, U.; Woll, C. Chem.-Eur. J. 2020, 26, 17016. |
[164] | Jiang, X.-T.; Yin, Q.; Liu, T.-F.; Cao, R. Chem. J. Chin. Univ. 2020, 41, 1691. |
[165] | Sen, B.; Santos, J. C. C.; Haldar, R.; Zhang, Q.; Hashem, T.; Qin, P.; Li, Y.; Kirschhofer, F.; Brenner-Weiss, G.; Gliemann, H.; Heinke, L.; Barner-Kowollik, C.; Knebel, A.; Woll, C. Nanoscale 2020, 12, 24419. |
[166] | Wang, S.; Pomerantz, N. L.; Dai, Z.; Xie, W.; Anderson, E. E.; Miller, T.; Khan, S. A.; Parsons, G. N. Mater. Today Adv. 2020, 8, 100085. |
[167] | Zhao, R.; Liao, H.; Wu, X. R.; Cao, X. L. J. Solid State Chem. 2020, 292, 121693. |
[168] | Zhu, K.; Fan, R. Q.; Wu, J. K.; Wang, B. W.; Lu, H. Y.; Zheng, X. B.; Sun, T. C.; Gai, S.; Zhou, X. S.; Yang, Y. L. ACS Appl. Mater. Interfaces 2020, 12, 58239. |
[169] | Haldar, R.; Woell, C. Nano Res. 2021, 14, 355. |
[170] | Jiang, T.; Sun, X. X.; Wei, L. L.; Li, M. G. Anal. Bioanal. Chem. 2021, 413, 565. |
[171] | Hurrle, S.; Friebe, S.; Wohlgemuth, J.; Woell, C.; Caro, J.; Heinke, L. Chem.-Eur. J. 2017, 23, 2294. |
[172] | Han, S.; Ciufo, R. A.; Meyerson, M. L.; Keitz, B. K.; Mullins, C. B. J. Mater. Chem. A 2019, 7, 19396. |
[173] | Usman, M.; Ali, M.; Al-Maythalony, B. A.; Ghanem, A. S.; Saadi, O. W.; Ali, M.; Mazumder, M. A. J.; Abdel-Azeim, S.; Habib, M. A.; Yamani, Z. H.; Ensinger, W. ACS Appl. Mater. Interfaces 2020, 12, 49992. |
[174] | Chung, T.-S.; Jiang, L. Y.; Li, Y.; Kulprathipanja, S. Prog. Polym. Sci. 2007, 32, 483. |
[175] | Jeazet, H. B. T.; Staudt, C.; Janiak, C. Dalton Trans. 2012, 41, 14003. |
[176] | Quan, K.; Pan, F.; Chen, Z.; Duan, C.; Yuan, B.; Yan, S. Inorg. Chem. Ind. 2021, 53, 1. |
[177] | Muthukumaraswamy Rangaraj, V.; Wahab, M. A.; Reddy, K. S. K.; Kakosimos, G.; Abdalla, O.; Favvas, E. P.; Reinalda, D.; Geuzebroek, F.; Abdala, A.; Karanikolos, G. N. Front Chem. 2020, 8, 1. |
[178] | Wang, Y. J.; Yang, G.; Guo, H. L.; Meng, X. L.; Kong, G. D.; Kang, Z. X.; Guillet-Nicolas, R.; Mintova, S. J. Membr. Sci. 2022, 643, 11. |
[179] | Zornoza, B.; Seoane, B.; Zamaro, J. M.; Tellez, C.; Coronas, J. ChemPhySchem 2011, 12, 2781. |
[180] | Chi, W. S.; Sundell, B. J.; Zhang, K.; Harrigan, D. J.; Hayden, S. C.; Smith, Z. P. ChemSusChem 2019, 12, 2355. |
[181] | Kathuria, A.; Abiad, M. G.; Auras, R. Polym. Int. 2013, 62, 1144. |
[182] | Nuhnen, A.; Klopotowski, M.; Jeazet, H. B. T.; Sorribas, S.; Zornoza, B.; Tellez, C.; Coronas, J.; Janiak, C. Dalton Trans. 2020, 49, 1822. |
[183] | Basu, S.; Cano-Odena, A.; Vankelecom, I. F. J. J. Membr. Sci. 2010, 362, 478. |
[184] | Duan, C.; Jie, X.; Zhu, H.; Liu, D.; Peng, W.; Cao, Y. J. Appl. Polym. Sci. 2018, 135, 45728. |
[185] | Chuah, C. Y.; Li, W.; Samarasinghe, S. A. S. C.; Sethunga, G. S. M. D. P.; Bae, T.-H. Microporous Mesoporous Mater. 2019, 290, 109680. |
[186] | Chuah, C. Y.; Samarasinghe, S. A. S. C.; Li, W.; Goh, K.; Bae, T.-H. Membranes 2020, 10, 1. |
[187] | Akbari, A.; Karimi-Sabet, J.; Ghoreishi, S. M. Sep. Purif. Technol. 2020, 251, 117317. |
[188] | Ockwig, N. W.; Nenoff, T. M. Chem. Rev. 2007, 107, 4078. |
[189] | Sanders, D. F.; Smith, Z. P.; Guo, R.; Robeson, L. M.; McGrath, J. E.; Paul, D. R.; Freeman, B. D. Polymer 2013, 54, 4729. |
[190] | Qian, Q.; Asinger, P. A.; Lee, M. J.; Han, G.; Mizrahi Rodriguez, K.; Lin, S.; Benedetti, F. M.; Wu, A. X.; Chi, W. S.; Smith, Z. P. Chem. Rev. 2020, 120, 8161. |
[191] | Yu, C.-H.; Huang, C.-H.; Tan, C.-S. Aerosol Air Qual. Res. 2012, 12, 745. |
[192] | Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. RSC Adv. 2013, 3, 14233. |
[193] | Shimekit, B.; Mukhtar, H. Advances in Natural Gas Technology, Chapter 9, Ed.: Hamid, A., IntechOpen, Malaysia, 2012, p. 235. |
[194] | Xu, H.; Tong, M.-M.; Wu, D.; Xiao, G.; Yang, Q.-Y.; Liu, D.-H.; Zhong, C.-L. Acta Phys.-Chim. Sin. 2015, 31, 41. (in Chinese) |
[194] | (许红, 童敏曼, 吴栋, 肖刚, 阳庆元, 刘大欢, 仲崇立, 物理化学学报, 2015, 31, 41.) |
[195] | Galizia, M.; Chi, W. S.; Smith, Z. P.; Merkel, T. C.; Baker, R. W.; Freeman, B. D. Macromolecules 2017, 50, 7809. |
[196] | Olajire, A. A. Energy 2010, 35, 2610. |
[197] | Yu, J.; Xie, L. H.; Li, J. R.; Ma, Y.; Seminario, J. M.; Balbuena, P. B. Chem. Rev. 2017, 117, 9674. |
[198] | Mao, Y.; Cao, W.; Li, J.; Liu, Y.; Ying, Y.; Sun, L.; Peng, X. J. Mater. Chem. A 2013, 1, 11711. |
[199] | Furukawa, H.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 8875. |
[200] | The Stern Review on the Economic Effects of Climate Change, Popul. Dev. Rev. 2006, 32, 793. |
[201] | Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. In Carbon Dioxide Capture and Storage, The Intergovernmental Panel on Climate Change, Eds.: Bert, M.; Ogunlade, D.; Heleen de C.; Manuela, L.; Leo, M., Cambridge University Press, Cambridge, 2005, pp. 105-171. |
[202] | Casado-Coterillo, C.; Fernandez-Barquin, A.; Zornoza, B.; Tellez, C.; Coronas, J.; Irabien, A. RSC Adv. 2015, 5, 102350. |
[203] | Casado-Coterillo, C.; Fernandez-Barquin, A.; Irabien, A. Membranes 2020, 10, 10010006. |
[204] | Wade, C. R.; Dinca, M. Dalton Trans. 2012, 41, 7931. |
[205] | Ge, L.; Wang, L.; Rudolph, V.; Zhu, Z. RSC Adv. 2013, 3, 25360. |
[206] | Hu, J.; Liu, J.; Liu, Y.; Yang, X. J. Phys. Chem. C 2016, 120, 10311. |
[207] | Cao, Y.; Zhao, Y.; Song, F.; Zhong, Q. J. Energy Chem. 2014, 23, 468. |
[208] | Mao, Y.; Chen, D.; Hu, P.; Guo, Y.; Ying, Y.; Ying, W.; Peng, X. Chem.-Eur. J. 2015, 21, 15127. |
[209] | Chen, Z.; Liu, J.; Cui, H.; Zhang, L.; Su, C. Acta Chim. Sinica 2019, 77, 242. (in Chinese) |
[209] | (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.) |
[210] | Gong, J.-H.; Wang, C.-H.; Bian, Z.-J.; Yang, L.; Hu, J.; Liu, H.-L. Acta Phys-Chim. Sin. 2015, 31, 1963. (in Chinese) |
[210] | 龚金华, 王臣辉, 卞子君, 阳立, 胡军, 刘洪来, 物理化学学报, 2015, 31, 1963.) |
[211] | Cao, F.; Zhang, C.; Xiao, Y.; Huang, H.; Zhang, W.; Liu, D.; Zhong, C.; Yang, Q.; Yang, Z.; Lu, X. Ind. Eng. Chem. Res. 2012, 51, 11274. |
[212] | Kaplan, K. H. Phys. Today 2007, 60, 31. |
[213] | Schrier, J. J. Phys. Chem. Lett. 2010, 1, 2284. |
[214] | Ghezzar, M. R.; Ognier, S.; Cavadias, S.; Abdelmalek, F.; Addou, A. Sep. Purif. Technol. 2013, 104, 250. |
[215] | Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R. A.; Wöll, C. J. Am. Chem. Soc. 2007, 129, 15118. |
[216] | Li, D.-J.; Gu, Z.-G.; Zhang, J. Chem. Sci. 2020, 11, 1935. |
[217] | Arslan, H. K.; Shekhah, O.; Wohlgemuth, J.; Franzreb, M.; Fischer, R. A.; Wöll, C. Adv. Funct. Mater. 2011, 21, 4228. |
[218] | Vozar, S.; Poh, Y.-C.; Serbowicz, T.; Bachner, M.; Podsiadlo, P.; Qin, M.; Verploegen, E.; Kotov, N.; Hart, A. J. Rev. Sci. Instrum. 2009, 80, 023903. |
[219] | Baac, H. W.; Ok, J. G.; Maxwell, A.; Lee, K.-T.; Chen, Y.-C.; Hart, A. J.; Xu, Z.; Yoon, E.; Guo, L. J. Sci. Rep. 2012, 2, 989. |
[220] | Arslan, H. K.; Shekhah, O.; Wieland, D. C. F.; Paulus, M.; Sternemann, C.; Schroer, M. A.; Tiemeyer, S.; Tolan, M.; Fischer, R. A.; Wöll, C. J. Am. Chem. Soc. 2011, 133, 8158. |
[221] | Li, W.; Zhang, Y.; Zhang, C.; Meng, Q.; Xu, Z.; Su, P.; Li, Q.; Shen, C.; Fan, Z.; Qin, L.; Zhang, G. Nat. Commun. 2016, 7, 11315. |
/
〈 |
|
〉 |