综述

共轭微孔聚合物膜的制备策略及其分离应用

  • 张蒙茜 ,
  • 冯霄
展开
  • 北京理工大学 化学与化工学院 北京 100081

张蒙茜, 北京理工大学化学与化工学院, 2017级博士(化学专业), 主要从事共轭微孔聚合物薄膜的制备及气体分离应用研究.

冯霄, 北京理工大学博士生导师, 化学与化工学院教授, 国家自然科学基金优秀青年科学基金获得者. 分别于2008年和2013年于北京理工大学材料学院取得本科与博士学位, 攻读博士期间以联合培养博士研究生身份留学于日本国家自然科学研究机构——分子科学研究所. 2013年就职于北京理工大学化学与化工学院. 主要从事关于共价有机框架材料等晶态多孔材料的构效关系研究以及膜分离相关领域应用研究.

收稿日期: 2021-11-07

  网络出版日期: 2022-01-14

基金资助

国家自然科学基金(21922502)

Fabrication Strategies of Conjugated Microporous Polymer Membranes for Molecular Separation

  • Mengxi Zhang ,
  • Xiao Feng
Expand
  • School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2021-11-07

  Online published: 2022-01-14

Supported by

National Natural Science Foundation of China(21922502)

摘要

降低工业分离过程的能耗为缓解全球能源紧缺问题提供了有效途径. 相比传统工业分离技术, 膜分离技术能耗低、经济效益高, 开发高效的膜材料是提升膜分离性能的重要手段. 共轭微孔聚合物(CMP)膜具有刚性永久超微孔道、高孔隙率、孔结构及化学环境可调控、交联骨架稳定性好等优势, 在分离领域具有良好的应用前景. 概述了近年来CMP膜的制备方法并简要对比了其优缺点, 阐述了CMP膜在气体分离、有机溶剂纳滤、离子筛分和手性分离等领域的分离机理和研究进展, 为开发新型具有良好分离性能的CMP膜材料提供研究思路.

本文引用格式

张蒙茜 , 冯霄 . 共轭微孔聚合物膜的制备策略及其分离应用[J]. 化学学报, 2022 , 80(2) : 168 -179 . DOI: 10.6023/A21110505

Abstract

Saving the energy consumption of the industrial separation process provides an effective way to alleviate the global energy shortage issue. Compared with traditional separation technology, membrane separation possesses low energy consumption and high economic benefits. The exploration of high-efficiency membrane materials is the key strategy to elevate membrane separation performance. Conjugated microporous polymer (CMP) membranes exhibit merits such as rigid and permanent micropores, high porosity, adjustable pore structure and pore environment, and good structural stability, which play vibrant role in molecular separation. In this review, we summarized the fabrication methods of CMP membranes with their advantages and challenges; introduced the research progress and mechanism in molecular separation field, including gas separation, organic solvent nanofiltration, ion sieving and chiral separation, over the recent years, which may provide ideas for designing new CMP membranes with high performance for crucial separation processes.

参考文献

[1]
Sholl, D. S.; Lively, R. P. Nature 2016, 532, 435.
[2]
(a) Ockwig, N. W.; Nenoff, T. M. Chem. Rev. 2007, 107, 4078.
[2]
(b) Iulianelli, A.; Algieri, C.; Donato, L.; Garofalo, A.; Galiano, F.; Bagnato, G.; Basile, A.; Figoli, A. Int. J. Hydrogen Energy 2017, 42, 22138.
[3]
(a) Koros, W. J.; Mahajan, R. J. Membr. Sci. 2000, 175, 181.
[3]
(b) Ku, A. Y.; Kulkarni, P.; Shisler, R.; Wei, W. J. Membr. Sci. 2011, 367, 233.
[4]
Wang, L.; Boutilier, M. S. H.; Kidambi, P. R.; Jang, D.; Hadjiconstantinou, N. G.; Karnik, R. Nat. Nanotechnol. 2017, 12, 509.
[5]
Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Angew. Chem., Int. Ed. 2017, 56, 9292.
[6]
(a) Greenfield, M. L.; Theodorou, D. N. Macromolecules 1993, 26, 5461.
[6]
(b) Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D. Science 2017, 356, eaab0530.
[6]
(c) Robeson, L. M. J. Membr. Sci. 2008, 320, 390.
[6]
(d) Sanders, D. F.; Smith, Z. P.; Guo, R.; Robeson, L. M.; McGrath, J. E.; Paul, D. R.; Freeman, B. D. Polymer 2013, 54, 4729.
[6]
(e) Robeson, L. M.; Liu, Q.; Freeman, B. D.; Paul, D. R. J. Membr. Sci. 2015, 476, 421.
[7]
(a) Choi, J.; Jeong, H. K.; Snyder, M. A.; Stoeger, J. A.; Masel, R. I.; Tsapatsis, M. Science 2009, 325, 590.
[7]
(b) Lai, Z.; Bonilla, G.; Diaz, I.; Nery, J. G.; Sujaoti, K.; Amat, M. A.; Kokkoli, E.; Terasaki, O.; Thompson, R. W.; Tsapatsis, M.; Vlachos, D. G. Science 2003, 300, 456.
[8]
(a) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.
[8]
(b) Lin, J. Y. S. Science 2016, 353, 121.
[8]
(c) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334.
[8]
(d) Qiu, S.; Xue, M.; Zhu, G. Chem. Soc. Rev. 2014, 43, 6116.
[8]
(e) Lü, L.; Zhao, Y.; Wei, Y.; Wang, H. Acta Chim. Sinica 2021, 79, 869. (in Chinese)
[8]
( 吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.)
[8]
(f) Li, X.; Yan, B.; Huang, W.; Fu, L.; Sun, X.; Lü, A. Acta Chim. Sinica 2021, 79, 459. (in Chinese)
[8]
( 李旭飞, 闫保有, 黄维秋, 浮历沛, 孙宪航, 吕爱华, 化学学报, 2021, 79, 459.)
[8]
(g) Zhang, H.; Li, G.; Zhang, K.; Liao, C. Acta Chim. Sinica 2017, 75, 841. (in Chinese)
[8]
( 张贺, 李国良, 张可刚, 廖春阳, 化学学报, 2017, 75, 841.)
[9]
(a) Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
[9]
(b) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Corte?s, J. L.; Co?te?, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268.
[9]
(c) Li, Y.; Guo, L.; Lü, Y.; Zhao, Z.; Ma, Y.; Chen, W.; Xing, G.; Jiang, D.; Chen, L. Angew. Chem., Int. Ed. 2021, 60, 5363.
[9]
(d) Li, Y.; Chen, Q.; Xu, T.; Xie, Z.; Liu, J.; Yu, X.; Ma, S.; Qin, T.; Chen, L. J. Am. Chem. Soc. 2019, 141, 13822.
[9]
(e) Xie, Z.; Wang, B.; Yang, Z.; Yang, X.; Yu, X.; Xing, G.; Zhang, Y.; Chen, L. Angew. Chem., Int. Ed. 2019, 58, 15742.
[9]
(f) Jiang, C.; Feng, X.; Wang, B. Acta Chim. Sinica 2020, 78, 466. (in Chinese)
[9]
( 蒋成浩, 冯霄, 王博, 化学学报, 2020, 78, 466.)
[10]
(a) Zimmerman, C. M.; Singh, A.; Koros, W. J. J. Membr. Sci. 1997, 137, 145.
[10]
(b) Zhang, Y.; Feng, X.; Yuan, S.; Zhou, J.; Wang, B. Inorg. Chem. Front. 2016, 3, 896.
[10]
(c) Zhu, X.; Hua, Y. Y.; Tian, C. C.; Abney, C. W.; Zhang, P.; Jin, T.; Liu, G. P.; Browning, K. L.; Sacci, R. L.; Veith, G. M.; Zhou, H. C.; Jin, W. Q.; Dai, S. Angew. Chem., Int. Ed. 2018, 57, 2816.
[10]
(d) Biswal, B. P.; Chaudhari, H. D.; Banerjee, R.; Kharul, U. K. Chemistry 2016, 22, 4695.
[10]
(e) Kang, Z.; Peng, Y.; Qian, Y.; Yuan, D.; Addicoat, M. A.; Heine, T.; Hu, Z.; Tee, L.; Guo, Z.; Zhao, D. Chem. Mater. 2016, 28, 1277.
[10]
(f) Liu, G.; Chernikova, V.; Liu, Y.; Zhang, K.; Belmabkhout, Y.; Shekhah, O.; Zhang, C.; Yi, S.; Eddaoudi, M.; Koros, W. J. Nat. Mater. 2018, 17, 283.
[10]
(g) Kitao, T.; Zhang, Y.; Kitagawa, S.; Wang, B.; Uemura, T. Chem. Soc. Rev. 2017, 46, 3108.
[10]
(h) Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabres, I. X. F. X.; Gascon, J. Nat. Mater. 2015, 14, 48.
[10]
(i) Vinh-Thang, H.; Kaliaguine, S. Chem. Rev. 2013, 113, 4980.
[11]
(a) Carreon, M. A.; Li, S.; Falconer, J. L.; Noble, R. D. J. Am. Chem. Soc. 2008, 130, 5412.
[11]
(b) Saufi, S. M.; Ismail, A. F. Carbon 2004, 42, 241.
[11]
(c) Lee, S. Solid State Ionics 2003, 158, 287.
[11]
(d) Wang, H.; Cong, Y.; Yang, W. Catal. Today 2003, 82, 157.
[12]
(a) Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Science 2014, 346, 1356.
[12]
(b) Fu, J.; Das, S.; Xing, G.; Ben, T.; Valtchev, V.; Qiu, S. J. Am. Chem. Soc. 2016, 138, 7673.
[13]
(a) Lee, J. S. M.; Cooper, A. I. Chem. Rev. 2020, 120, 2171.
[13]
(b) Zhang, H.; Zhang, Y.; Gu, C.; Ma, Y. Adv. Energy Mater. 2015, 5, 1402175.
[13]
(c) Liu, Z.; Yin, Y.; Eginligil, M.; Wang, L.; Liu, J.; Huang, W. Polym. Chem. 2021, 12, 807.
[13]
(d) Meng, S.; Zou, X.; Liu, C.; Ma, H.; Zhao, N.; Ren, H.; Jia, M.; Liu, J.; Zhu, G. ChemCatChem 2016, 8, 1.
[13]
(e) Yang, S.-J.; Ding, X.-S.; Han, B.-H. Macromolecules 2018, 51, 947.
[13]
(f) Sun, C.-J.; Zhao, X.-Q.; Wang, P.-F.; Wang, H.; Han, B.-H. Sci. China Chem. 2017, 60, 1067.
[14]
Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem., Int. Ed. 2007, 46, 8574.
[15]
Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. J. Am. Chem. Soc. 2010, 132, 6742.
[16]
Jiang, J.-X.; Trewin, A.; Adams, D. J.; Cooper, A. I. Chem. Sci. 2011, 2, 1777.
[17]
Sun, L.; Liang, Z.; Yu, J.; Xu, R. Polym. Chem. 2013, 4, 1932.
[18]
Yuan, S.; Dorney, B.; White, D.; Kirklin, S.; Zapol, P.; Yu, L.; Liu, D. J. Chem. Commun. 2010, 46, 4547.
[19]
Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Angew. Chem., Int. Ed. 2011, 50, 8753.
[20]
Xu, C.; Hedin, N. J. Mater. Chem. A 2013, 1, 3406.
[21]
Zhu, X.; Tian, C.; Jin, T.; Wang, J.; Mahurin, S. M.; Mei, W.; Xiong, Y.; Hu, J.; Feng, X.; Liu, H.; Dai, S. Chem. Commun. 2014, 50, 15055.
[22]
Lu, G.; Yang, H.; Zhu, Y.; Huggins, T.; Ren, Z. J.; Liu, Z.; Zhang, W. J. Mater. Chem. A 2015, 3, 4954.
[23]
Zhang, Y.; A, S.; Zou, Y.; Luo, X.; Li, Z.; Xia, H.; Liu, X.; Mu, Y. J. Mater. Chem. A 2014, 2, 13422.
[24]
Liao, Y.; Wang, H.; Zhu, M.; Thomas, A. Adv. Mater. 2018, 30, 1705710.
[25]
Gu, C.; Chen, Y.; Zhang, Z.; Xue, S.; Sun, S.; Zhang, K.; Zhong, C.; Zhang, H.; Pan, Y.; Lü, Y.; Yang, Y.; Li, F.; Zhang, S.; Huang, F.; Ma, Y. Adv. Mater. 2013, 25, 3443.
[26]
Germain, J.; Frechet, J. M.; Svec, F. Chem. Commun. 2009, 1526.
[27]
Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008, 130, 6334.
[28]
(a) Bhunia, A.; Vasylyeva, V.; Janiak, C. Chem. Commun. 2013, 49, 3961.
[28]
(b) Liu, X.; Li, H.; Zhang, Y.; Xu, B.; A, S.; Xia, H.; Mu, Y. Polym. Chem. 2013, 4, 2445.
[29]
(a) Zhang, W.; Li, C.; Yuan, Y.-P.; Qiu, L.-G.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. J. Mater. Chem. 2010, 20, 6413.
[29]
(b) Zhang, W.; Liang, F.; Li, C.; Qiu, L. G.; Yuan, Y. P.; Peng, F. M.; Jiang, X.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. J. Hazard. Mater. 2011, 186, 984.
[30]
(a) Zhang, P.; Weng, Z.; Guo, J.; Wang, C. Chem. Mater. 2011, 23, 5243.
[30]
(b) Muenmart, D.; Foster, A. B.; Harvey, A.; Chen, M.-T.; Navarro, O.; Promarak, V.; McCairn, M. C.; Behrendt, J. M.; Turner, M. L. Macromolecules 2014, 47, 6531.
[31]
Cheng, G.; Hasell, T.; Trewin, A.; Adams, D. J.; Cooper, A. I. Angew. Chem., Int. Ed. 2012, 51, 12727.
[32]
Lindemann, P.; Tsotsalas, M.; Shishatskiy, S.; Abetz, V.; Krolla- Sidenstein, P.; Azucena, C.; Monnereau, L.; Beyer, A.; Gölzhäuser, A.; Mugnaini, V.; Gliemann, H.; Bräse, S.; Wöll, C. Chem. Mater. 2014, 26, 7189.
[33]
(a) Liang, B.; Wang, H.; Shi, X.; Shen, B.; He, X.; Ghazi, Z. A.; Khan, N. A.; Sin, H.; Khattak, A. M.; Li, L.; Tang, Z. Nat. Chem. 2018, 10, 961.
[33]
(b) Lindemann, P.; Schade, A.; Monnereau, L.; Feng, W.; Batra, K.; Gliemann, H.; Levkin, P.; Bräse, S.; Wöll, C.; Tsotsalas, M. J. Mater. Chem. A 2016, 4, 6815.
[33]
(c) Senkovskyy, V.; Senkovska, I.; Kiriy, A. ACS Macro Lett. 2012, 1, 494.
[33]
(d) Becker, D.; Heidary, N.; Horch, M.; Gernert, U.; Zebger, I.; Schmidt, J.; Fischer, A.; Thomas, A. Chem. Commun. 2015, 51, 4283.
[34]
(a) Chen, Z.; Chen, M.; Yu, Y.; Wu, L. Chem. Commun. 2017, 53, 1989.
[34]
(b) Shao, P.; Yao, R.; Li, G.; Zhang, M.; Yuan, S.; Wang, X.; Zhu, Y.; Zhang, X.; Zhang, L.; Feng, X.; Wang, B. Angew. Chem., Int. Ed. 2020, 59, 4401.
[35]
(a) Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y.; Jiang, D. Angew. Chem., Int. Ed. 2014, 53, 4850.
[35]
(b) Gu, C.; Huang, N.; Chen, Y.; Qin, L.; Xu, H.; Zhang, S.; Li, F.; Ma, Y.; Jiang, D. Angew. Chem., Int. Ed. 2015, 54, 13594.
[36]
(a) Wang, L.; Zeng, C.; Xu, H.; Yin, P.; Chen, D.; Deng, J.; Li, M.; Zheng, N.; Gu, C.; Ma, Y. Chem. Sci. 2019, 10, 1023.
[36]
(b) Tang, X.; Ma, N.; Xu, H.; Zhang, H.; Zhang, Q.; Cai, L.; Otake, K.; Yin, P.; Kitagawa, S.; Horike, S.; Gu, C. Mater. Horiz. 2021, 8, 3088.
[36]
(c) Wang, L.; Jiang, Q.; Zhao, D.; Zhang, Q.; Jia, Y.; Gu, C.; Hu, D.; Ma, Y. CCS Chem. 2021, 3, 2688.
[37]
(a) Zhang, M.; Jing, X.; Zhao, S.; Shao, P.; Zhang, Y.; Yuan, S.; Li, Y.; Gu, C.; Wang, X.; Ye, Y.; Feng, X.; Wang, B. Angew. Chem., Int. Ed. 2019, 58, 8768.
[37]
(b) Zhang, M.; Yu, A.; Wu, X.; Shao, P.; Huang, X.; Ma, D.; Han, X.; Xie, J.; Feng, X.; Wang, B. Nano Res. 2021, DOI: 10.1007/s12274-021-3750-z.
[37]
(c) Jimenez-Solomon, M. F.; Song, Q.; Jelfs, K. E.; Munoz-Ibanez, M.; Livingston, A. G. Nat. Mater. 2016, 15, 760.
[37]
(d) Shan, M.; Liu, X.; Wang, X.; Yarulina, I.; Seoane, B.; Kapteijn, F.; Gascon, J. Sci. Adv. 2018, 4, 1698.
[38]
(a) Zhou, Z.; Guo, D.; Shinde, D. B.; Cao, L.; Li, Z.; Li, X.; Lu, D.; Lai, Z. ACS Nano 2021, 15, 11970.
[38]
(b) Zhou, Z.; Shinde, D. B.; Guo, D.; Cao, L.; Nuaimi, R. A.; Zhang, Y.; Enakonda, L. R.; Lai, Z. Adv. Funct. Mater. 2021, 2108672.
[39]
(a) He, X.; Sin, H.; Liang, B.; Ghazi, Z. A.; Khattak, A. M.; Khan, N. A.; Alanagh, H. R.; Li, L.; Lu, X.; Tang, Z. Adv. Funct. Mater. 2019, 29, 1900134.
[39]
(b) Tiwari, K.; Sarkar, P.; Modak, S.; Singh, H.; Pramanik, S. K.; Karan, S.; Das, A. Adv. Mater. 2020, 32, 1905621.
[39]
(c) Li, K.; Zhu, J.; Liu, D.; Zhang, Y.; Van der Bruggen, B. Chem. Mater. 2021, 33, 7047.
[39]
(d) Zhou, Z.; Li, X.; Guo, D.; Shinde, D. B.; Lu, D.; Chen, L.; Liu, X.; Cao, L.; Aboalsaud, A. M.; Hu, Y.; Lai, Z. Nat. Commun. 2020, 11, 5323.
[40]
(a) Gu, C.; Huang, N.; Wu, Y.; Xu, H.; Jiang, D. Angew. Chem., Int. Ed. 2015, 54, 11540.
[40]
(b) Lindemann, P.; Schade, A.; Monnereau, L.; Feng, W.; Batra, K.; Gliemann, H.; Levkin, P.; Brase, S.; Woll, C.; Tsotsalas, M. J. Mater. Chem. A 2016, 4, 6815.
[41]
(a) Yang, S.; Yang, C.; Zhang, X.; Zheng, Z.; Bi, S.; Zhang, Y.; Zhou, H. J. Mater. Chem. C 2018, 6, 9044.
[41]
(b) Bai, S.; Hu, Q.; Zeng, Q.; Wang, M.; Wang, L. ACS Appl. Mater. Inter. 2018, 10, 11319.
[42]
Zhang, Q.; Dong, H.; Hu, W. J. Mater. Chem. C 2018, 6, 10672.
[43]
Liu, J.; Wei, W.; Jiang, J. ACS Sustainable Chem. Eng. 2020, 8, 2892.
[44]
Mulunda, M. M.; Zhang, Z.; Nies, E.; van Goethem, C.; Vankelecom, I. F. J.; Koeckelberghs, G. Macromol. Chem. Phys. 2018, 219, 1800024.
[45]
Huang, Y.; Zang, Y.; Xu, L.; Lei, T.; Cui, J.; Xie, Y.; Wang, J.; Jia, H.; Miao, F. Sep. Purif. Technol. 2021, 266, 118529.
[46]
(a) Chuah, C. Y.; Goh, K.; Yang, Y.; Gong, H.; Li, W.; Karahan, H. E.; Guiver, M. D.; Wang, R.; Bae, T. H. Chem. Rev. 2018, 118, 8655.
[46]
(b) Samarasinghe, S.; Chuah, C. Y.; Karahan, H. E.; Sethunga, G.; Bae, T. H. Membranes 2020, 10, 75.
[47]
(a) Marchetti, P.; Jimenez Solomon, M. F.; Szekely, G.; Livingston, A. G. Chem. Rev. 2014, 114, 10735.
[47]
(b) Szekely, G.; Jimenez-Solomon, M. F.; Marchetti, P.; Kim, J. F.; Livingston, A. G. Green Chem. 2014, 16, 4440.
[47]
(c) Liang, B.; He, X.; Hou, J.; Li, L.; Tang, Z. Adv. Mater. 2019, 31, e1806090.
[48]
(a) Mi, B. Science 2014, 343, 740.
[48]
(b) Liu, P.; Hou, J.; Zhang, Y.; Li, L.; Lu, X.; Tang, Z. Inorg. Chem. Front. 2020, 7, 2560.
[49]
(a) Shen, J.; Okamoto, Y. Chem. Rev. 2016, 116, 1094.
[49]
(b) Navarro- Sanchez, J.; Argente-Garcia, A. I.; Moliner-Martinez, Y.; Roca- Sanjuan, D.; Antypov, D.; Campins-Falco, P.; Rosseinsky, M. J.; Marti-Gastaldo, C. J. Am. Chem. Soc. 2017, 139, 4294.
[49]
(c) Sun, Z.; Hou, J.; Li, L.; Tang, Z. Coordin. Chem. Rev. 2020, 425, 213481.
文章导航

/