二茂铁功能化的两例镉金属有机框架材料的合成、结构和表征※
收稿日期: 2021-12-31
网络出版日期: 2022-02-17
基金资助
国家自然科学基金(21871050)
Synthesis, Structure and Characterization of Two Ferrocene Functionalized Cadmium Metal Organic Frameworks※
Received date: 2021-12-31
Online published: 2022-02-17
Supported by
National Natural Science Foundation of China(21871050)
含有二茂铁单元的1,1'-二茂铁二羧酸(H2FcDCA)是构筑具有氧化还原活性的金属有机框架(MOFs)的理想配体, 然而由于其不可控的配位模式和扭转角, 目前基于H2FcDCA的配合物的合成仍然具有挑战性. 本工作中, 利用H2FcDCA与Cd2+反应合成了2个新颖的MOFs. 化合物1中, 镉中心被FcDCA和4,4'-联吡啶(bpy)桥连形成二维层. 在该体系中引入草酸则实现了三维框架的构筑(化合物2). 和1不同, 2中具有双核Cd2单元, 该单元通过bpy和草酸连接形成具有金刚石型拓扑的框架, FcDCA同时作为功能单元和孔分割配体. 这2个化合物都表现出可见光吸收、光电流响应和典型的二茂铁氧化还原特性, 这些特性使其在光电催化方面具有潜在的应用前景.
张容 , 柳江萍 , 朱子怡 , 陈淑妹 , 王飞 , 张健 . 二茂铁功能化的两例镉金属有机框架材料的合成、结构和表征※[J]. 化学学报, 2022 , 80(3) : 249 -254 . DOI: 10.6023/A21120611
Metal-organic frameworks (MOFs) are one of the most important crystalline porous materials. In recent years, there has been a strong interest in MOFs based devices with electrochemical activity. MOFs with redox activity are the ideal choice for such devices. 1,1'-Ferrocene dicarboxylic acid (H2FcDCA) containing ferrocene units is an ideal ligand for constructing MOFs with redox activity. However, due to its uncontrollable coordination mode and torsion angle, there is still a challenge to construct such materials. In this paper, two MOFs were synthesized by the reaction of functional ligand H2FcDCA with Cd2+ under different hydrothermal conditions: [Cd(FcDCA)(bpy)(H2O)]•(bpy) (1) (bpy=4,4'-bipyridine) and [Cd2(FcDCA)(bpy)(OX)(H2O)2]•2H2O (2) (H2OX=oxalic acid). The single crystal structure, fluorescence properties, redox activity of two compounds were characterized and described. In compound 1, Cd center was linked by FcDCA to form a zigzag chain, and it was linked by bpy to form a chain. Both chains linked each other by sharing the Cd center to give birth to a 2D layer with square lattice topology (sql). These layers were packed in AA mode along ac plane. Bpy as guest molecules are filled in the channel of it. By introducing H2OX in this system under similar condition, compound 2 with 3D framework was obtained. Different to compound 1, two Cd atoms were coordinated by OX ligands to form a binuclear Cd2 unit. The Cd2 units were connected by bpy and OX ligands to form a 3D framework with typical 4-connected diamond topology (dia). Each FcDCA ligand linked two Cd2 units as functional unit and pore partition agent. The whole framework of compound 2 can be simplified as 6-connected sxd topology by treating three kinds of ligands FcDCA, bpy and OX as linkers. Both compounds exhibited strong visible light absorption ability, photocurrent response, and typical redox properties of ferrocene, which may be good candidates for photoelectric catalysts.
[1] | Kealy, T. J.; Pauson, P. L. Nature 1951, 168, 1039. |
[2] | Liang, Y.; Xu, X. D.; Ni, J. L.; Li, J. F.; Wang, F. M. Chin. J. Struct. Chem. 2021, 40, 193. (in Chinese) |
[2] | (梁宇, 许秀典, 倪建玲, 李俊峰, 汪芳明, 结构化学, 2021, 40, 193.) |
[3] | Wang, X. T.; Wei, W.; Zhang, K.; Du, S. W. Chin. J. Struct. Chem. 2021, 40, 369. (in Chinese) |
[3] | (王雪婷, 魏伟, 张凯, 杜少武, 结构化学, 2021, 40, 369.) |
[4] | Chen, R. Y.; Chen, G. H.; He, Y. P.; Zhang, J. Chin. J. Struct. Chem. 2022, 41, 2201001. (in Chinese) |
[4] | (陈瑞燕, 陈光辉, 何燕萍, 张健, 结构化学, 2022, 41, 2201001.) |
[5] | Li, G. P.; Li, Z. Z.; Xie, H. F.; Fu, Y. L.; Wang, Y. Y. Chin. J. Struct. Chem. 2021, 40, 1047. (in Chinese) |
[5] | (李高鹏, 李贞贞, 谢红芳, 付云龙, 王尧宇, 结构化学, 2021, 40, 1047.) |
[6] | Zhao, Y.-W.; Li, X.; Zhang, F.-Q.; Zhang, X. Acta Chim. Sinica 2021, 79, 1409. (in Chinese) |
[6] | (赵彦武, 李星, 张富强, 张祥, 化学学报, 2021, 79, 1409.) |
[7] | Hao, X.-K.; Zhai, Z.-Y.; Sun, Y. -X.; Li, C.-J. Acta Chim. Sinica 2022, 80, 49. (in Chinese) |
[7] | (郝肖柯, 翟振宇, 孙亚昕, 李从举, 化学学报, 2022, 80, 49.) |
[8] | Chen, G. H.; He, Y. P.; Zhang, L.; Zhang, J. Acta Chim. Sinica 2020, 78, 1411. (in Chinese) |
[8] | (陈光辉, 何燕萍, 张磊, 张健, 化学学报, 2020, 78, 1411.) |
[9] | Dong, J.-L.; Shen, L.-Z.; Wen, B.; Song, Z.; Feng, J. J.; Liang, G.; Liu, B.; Yang, B. S. Acta Chim. Sinica 2020, 78, 1260. (in Chinese) |
[9] | (董金龙, 沈腊珍, 文斌, 宋珍, 冯俊杰, 梁钢, 刘斌, 杨斌盛, 化学学报, 2020, 78, 1260.) |
[10] | Zhou, H. L.; Zhang, Y. B.; Zhang, J. P.; Chen, X. M. Nat. Commun. 2015, 6, 6917. |
[11] | Patra, M.; Gasser, G. Nat. Rev. Chem. 2017, 1, 0066. |
[12] | Ludwig, B. S.; Correia, J. D. G.; Kühn, F. E. Coord. Chem. Rev. 2019, 396, 22. |
[13] | Qian, Y.; Sun, Y.-M.; Liu, J.-Z. Acta Chim. Sinica 1998, 56, 453. (in Chinese) |
[13] | (钱鹰, 孙岳明, 刘举正, 化学学报, 1998, 56, 340.) |
[14] | Kaur, S.; Kaur, M.; Kaur, P.; Clays, K.; Singh, K. Coord. Chem. Rev. 2017, 343, 185. |
[15] | Gu, H. B.; Mu, S. D.; Qiu, G. R.; Liu, X.; Zhang, L.; Yuan, Y. F.; Astruc, D. Coord. Chem. Rev. 2018, 364, 51. |
[16] | Dwadnia, N.; Roger, J.; Pirio, N.; Cattey, H.; Hierso, J. C. Coord. Chem. Rev. 2018, 355, 74. |
[17] | Liu, J. J.; Li, N.; Sun, J. W.; Liu, J.; Dong, L. Z.; Yao, S. J.; Zhang, L.; Xin, Z. F.; Shi, J. W.; Wang, J. X.; Li, S. L.; Lan, Y. Q. ACS Catal. 2021, 11, 4510. |
[18] | Rajak, R.; Saraf, M.; Mohammad, A.; Mobin, S. M. J. Mater. Chem. A 2017, 5, 17998. |
[19] | Han, E. M.; Yu, W. D.; Li, L. J.; Yi, X. Y.; Yan, J.; Liu, C. Chem. Commun. 2021, 57, 2792. |
[20] | Li, G.; Hou, H. W.; Li, L. K.; Meng, X. R.; Fan, Y. T.; Zhu, Y. Inorg. Chem. 2003, 42, 4995. |
[21] | Meng, X. R.; Li, G.; Hou, H. W.; Han, H. Y.; Fan, Y. T.; Zhu, Y.; Du, C. X. J. Organomet. Chem. 2003, 679, 153. |
[22] | Deng, Z.; Fang, C.; Ma, X.; Li, X.; Zeng, Y.-J.; Peng, X. ACS Appl. Mater. Interfaces 2020, 12, 20321. |
[23] | Hirai, K.; Uehara, H.; Kitagawa, S.; Furukawa, S. Dalton Trans. 2012, 41, 3924. |
[24] | Benecke, J.; Grape, E. S.; Fuss, A.; Wohlbrandt, S.; Engesser, T. A.; Inge, A. K.; Stock, N.; Reinsch, H. Inorg. Chem. 2020, 59, 9969. |
[25] | Gao, R.; Chen, S. M.; Wang, F.; Zhang, J. Inorg. Chem. 2021, 60, 239. |
[26] | Du, C.-L.; Wang, L.-H.; Jiang, N.; Huang, X.-H. Acta Chim. Sinica 2011, 69, 601. (in Chinese) |
[26] | (杜春蕾, 王丽红, 江娜, 黄晓华, 化学学报, 2011, 69, 601.) |
[27] | Yue, Q.; Wang, Y. Y.; Hu, X. L.; Guo, X. W.; Gao, E. Q. CrystEngComm 2019, 21, 6719. |
[28] | Kim, J.; Jo, H.; Yoon, S. W.; Lee, M. H.; Choi, W. J.; Choi, K. Y.; Ok, K.M. Eur. J. Inorg. Chem. 2020, 5, 452. |
[29] | Wang, X. Y.; Li, X. M.; Pan, Y. R.; Liu, B.; Zhou, S. Chin. J. Struct. Chem. 2019, 38, 1275. (in Chinese) |
[29] | (王秀艳, 李秀梅, 潘亚茹, 刘博, 周实, 结构化学, 2019, 38, 1275.) |
[30] | Li, Z. T.; Ding, L. W.; Wang, Y. L. Chin. J. Struct. Chem. 2020, 39, 132. (in Chinese) |
[30] | (李振涛, 丁立稳, 王玉玲, 结构化学, 2020, 39, 132.) |
[31] | Wang, X. W.; Chen, J. Z.; Liu, J. Naturforsch. 2007, 62, 1139. |
/
〈 |
|
〉 |