研究论文

表面双重后处理方法提升三元NiMgO半导体界面层及其有机太阳能电池的性能

  • 何新蕊 ,
  • 蔡丽娜 ,
  • 陈汉生 ,
  • 尹攀 ,
  • 尹志刚 ,
  • 郑庆东
展开
  • a 福州大学化学学院 福州 350108
    b 中国科学院福建物质结构研究所 结构化学国家重点实验室 福州 350002
    c 中国福建光电信息科学与技术创新实验室 福州 350108
庆祝中国科学院青年创新促进会十年华诞.

收稿日期: 2021-12-31

  网络出版日期: 2022-03-10

基金资助

福建省杰出青年科学基金(2019J06023); 国家自然科学基金(52130306); 国家自然科学基金(52173241); 中国福建光电信息科学与技术创新实验室(闽都创新实验室)主任基金(2021ZR116)

A Dual Post-Treatment Method for Improving the Performance of Ternary NiMgO Semiconductor Interfacial Layers and Their Organic Solar Cells

  • Xinrui He ,
  • Lina Cai ,
  • Hansheng Chen ,
  • Pan Yin ,
  • Zhigang Yin ,
  • Qingdong Zheng
Expand
  • a College of Chemistry, Fuzhou University, Fuzhou 350108
    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
    c Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108
Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.

Received date: 2021-12-31

  Online published: 2022-03-10

Supported by

Natural Science Foundation of Fujian Province for Distinguished Young Scholars(2019J06023); National Natural Science Foundation of China(52130306); National Natural Science Foundation of China(52173241); Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China(2021ZR116)

摘要

采用溶胶-凝胶法制备了Mg掺杂氧化镍(NiO)的三元氧化物半导体NiMgO薄膜, 研究了不同表面后处理方法对薄膜结构、性质和能级的影响. 利用NiMgO薄膜作为新型空穴传输界面层构建了非富勒烯有机太阳能电池, 研究了器件性能变化及其物理机制. 结果表明, 以未表面处理NiMgO为界面层时, 器件的能量转化效率(PCE)为5.90%; 使用紫外-臭氧(UVO)表面后处理的NiMgO界面层, 器件PCE大幅提升至12.67%. 而NiMgO在UVO处理前进行润洗, 可以去除表面残留物, 薄膜变平整且透光率增加. 因此, 采用润洗与UVO结合的表面双重后处理新策略后, 器件的开路电压不变, 但短路电流密度和填充因子分别提高到23.48 mA•cm–2和64.29%, 最终PCE达到13.17%. 该研究为半导体氧化物薄膜及器件的优化提供了一条有效途径.

本文引用格式

何新蕊 , 蔡丽娜 , 陈汉生 , 尹攀 , 尹志刚 , 郑庆东 . 表面双重后处理方法提升三元NiMgO半导体界面层及其有机太阳能电池的性能[J]. 化学学报, 2022 , 80(5) : 581 -589 . DOI: 10.6023/A21120622

Abstract

Organic solar cells (OSCs) are among the most promising photovoltaic technologies to solve energy and environmental problems. To achieve highly efficient OSCs, controlling over electrode interfacial layers is greatly important for improving charge transportation and collection. Here, ternary metal oxide semiconductor films of Mg-doped NiO (NiMgO) have been prepared via a sol-gel method, and further optimized by several post-treatment strategies. The structures, properties and energy levels of different NiMgO films have been investigated to explore the influence of various post-treatment strategies. Incorporating the ternary NiMgO films as a novel type of hole transport layers (HTLs), non-fullerene OSCs have been fabricated based on a promising bulk-heterojunction of PM6:M36. Their photovoltaic performances and mechanisms of device physics are also investigated. When the sol-gel derived NiMgO film without post-treatment is used as an HTL, the OSCs show a relatively low power conversion efficiency (PCE) of 5.90%. By contrast, after simple ultraviolet-ozone (UVO) post-treatment on the NiMgO HTL, the resulted OSCs exhibit greatly enhanced photovoltaic performances, with an increased open-circuit voltage (VOC) of 0.87 V and an improved PCE of 12.67%. More importantly, a new dual post-treatment combining surface rinse with UVO treatment has been demonstrated to further optimize NiMgO HTLs and improve device performances. The rinse process can remove excess impurities and flatten the surface of NiMgO films as well as increase the transmittance, while the UVO treatment process is beneficial for reducing surface defects of the ternary oxide films. Benefit-ing from such an efficient dual post-treatment on NiMgO HTLs, the OSCs afford a high PCE of 13.17% with a retained VOC of 0.87 V, an increased short-circuit current density of 23.48 mA•cm–2, and an improved fill factor of 64.29%. These results provide an effective way for surface post-treatment and property optimization of semiconducting metal oxide films, and contribute to the development of high-performance optoelectronic devices.

参考文献

[1]
Wang, F.; Harindintwali, J. D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; Chang, S. X.; Zhang, L.; Rinklebe, J.; Yuan, Z.; Zhu, Q.; Xiang, L.; Tsang, D.; Xu, L.; Jiang, X.; Liu, J.; Wei, N.; Kästner, M.; Zou, Y.; Ok, Y. S.; Shen, J.; Peng, D.; Zhang, W.; Barceló, D.; Zhou, Y.; Bai, Z.; Li, B.; Zhang, B.; Wei, K.; Cao, H.; Tan, Z.; Zhao, L.; He, X.; Zheng, J.; Bolan, N.; Liu, X.; Huang, C.; Dietmann, S.; Luo, M.; Sun, N.; Gong, J.; Gong, Y.; Brahushi, F.; Zhang, T.; Xiao, C.; Li, X.; Chen, W.; Jiao, N.; Lehmann, J.; Zhu, Y.; Jin, H.; Schäffer, A.; Tiedje, J. M.; Chen, J. M. The Innovation 2021, 2, 100180.
[2]
Classen, A.; Chochos, C. L.; Lüer, L.; Gregoriou, V. G.; Wortmann, J.; Osvet, A.; Forberich, K.; McCulloch, I.; Heumüller, T.; Brabec, C. J. Nat. Energy 2020, 5, 711.
[3]
Wang, W.; Wang, J.; Zheng, Z.; Hou, J. Acta Chim. Sinica 2020, 78, 382. (in Chinese)
[3]
(王文璇, 王建邱, 郑众, 侯剑辉, 化学学报, 2020, 78, 382.)
[4]
Lv, M.; Zhou, R.; Lv, K.; Wei, Z. Acta Chim. Sinica 2021, 79, 284. (in Chinese)
[4]
(吕敏, 周瑞敏, 吕琨, 魏志祥, 化学学报, 2021, 79, 284.)
[5]
Guo, X.; Cui, C.; Zhang, M.; Huo, L.; Huang, Y.; Hou, J.; Li, Y. Energy Environ. Sci. 2012, 5, 7943.
[6]
Yu, G.; Gao, J.; Hummelen, J. C.; Wudi, F.; Heeger, A. J. Science 1995, 270, 1789.
[7]
Yin, Z.; Zheng, Q.; Chen, S.; Cai, D.; Ma, Y. Adv. Energy Mater. 2016, 6, 1501493.
[8]
Yin, Z.; Wei, J.; Chen, S.; Cai, D.; Ma, Y.; Wang, M.; Zheng, Q. J. Mater. Chem. A 2017, 5, 3888.
[9]
Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Nat. Energy 2016, 1, 15027
[10]
Lin, Y.; Wang, J.; Zhang, Z.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170.
[11]
Li, T.; Zhan, X. Acta Chim. Sinica 2021, 79, 257. (in Chinese)
[11]
(李腾飞, 占肖卫, 化学学报, 2021, 79, 257.)
[12]
Zhang, J.; Tan, H.; Guo, X.; Facchetti, A.; Yan, H. Nat. Energy 2018, 3, 720.
[13]
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.; Lau, T.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Joule 2019, 3, 1140.
[14]
Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y. Nat. Energy 2021, 6, 605.
[15]
Ma, Y.; Cai, D.; Wan, S.; Yin, P.; Wang, P.; Lin, W.; Zheng, Q. Natl. Sci. Rev. 2020, 7, 1886.
[16]
Tang, C.; Ma, X.; Wang, J.; Zhang, X.; Liao, R.; Ma, Y.; Wang, P.; Wang, P.; Wang, T.; Zhang, F.; Zheng, Q. Angew. Chem., Int. Ed. 2021, 60, 19314.
[17]
Liu, Y.; Liu, B.; Ma, C.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z.; Bo, Z. Sci. China: Chem. 2022, 65, 224.
[18]
Yin, Z.; Wei, J.; Zheng, Q. Adv. Sci. 2016, 3, 1500362.
[19]
Ma, C.; Fu, W.; Huang, G.; Chen, H.; Xu, M. Acta Chim. Sinica 2015, 73, 949. (in Chinese)
[19]
(马春燕, 傅伟飞, 黄国伟, 陈红征, 徐明生, 化学学报, 2015, 73, 949.)
[20]
Guang, S.; Yu, J.; Wang, H.; Liu, X.; Qu, S.; Zhu, R.; Tang, W. J. Energy Chem. 2021, 56, 496.
[21]
Zhang, C.; Luo, Q.; Wu, H.; Li, H.; Lai, J.; Ji, G.; Yan, L.; Wang, X.; Zhang, D.; Lin, J.; Chen, L.; Yang, J.; Ma, C. Org. Electron. 2017, 45, 190.
[22]
Yip, H.; Jen, A. Energy Environ. Sci. 2012, 5, 5994.
[23]
Liu, J.; Xue, Y.; Gao, Y.; Yu, D.; Durstock, M.; Dai, L. Adv. Mater. 2012, 24, 2228.
[24]
Yin, Z.; Zheng, Q.; Chen, S.; Cai, D. ACS Appl. Mater. Interfaces 2013, 5, 9015.
[25]
Lou, Y. H.; Wang, Z. K. Nanoscale 2017, 9, 13506.
[26]
Zhan, T.; Ren, P.; Huang, X.; Zhang, X.; Chen, G.; Xiong, J.; Xue, X.; Cai, P.; Zhang, J.; Chen, J. Solar Energy 2021, 216, 211.
[27]
Manders, J. R.; Tsang, S.; Hartel, H. J.; Lai, T.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Adv. Funct. Mater. 2013, 23, 2993.
[28]
Jiang, F.; Choy, W. C. H.; Li, X.; Zhang, D.; Cheng, J. Adv. Mater. 2015, 27, 2930.
[29]
Hossain, M. A.; Zhang, T.; Zakaria, Y.; Lambert, D.; Burr, P. A.; Rashkeev, S. N.; Abdallah, A.; Hoex, B. IEEE J. Photovolt. 2021, 11, 1176.
[30]
Zhang, J. Y.; Li, W. W.; Hoye, R. L. Z.; Macmanus-Driscoll, J. L.; Budde, M.; Bierwagen, O.; Wang, L.; Du, Y.; Wahila, M. J.; Piper, L. F. J.; Lee, T. L.; Edwards, H. J.; Dhanak, V. R.; Zhang, K. H. L. J. Mater. Chem. C 2018, 6, 2275.
[31]
Denny, Y. R.; Lee, K.; Park, C.; Oh, S. K.; Kang, H. J.; Yang, D.; Seo, S. Thin Solid Films 2015, 591, 255.
[32]
Wang, N.; Liu, C. Q.; Wen, C. Q. L. B.; Wang, H. L.; Liu, S. M.; Jiang, W. W.; Ding, W. Y.; Chai, W. P. Thin Solid Films 2016, 616, 587.
[33]
Huang, S.; Wang, Y.; Shen, S.; Tang, Y.; Yu, A.; Kang, B.; Silva, S. R. P.; Lu, G. J. Colloid Interface Sci. 2019, 535, 308.
[34]
Mares, J. W.; Boutwell, C. R.; Scheurer, A.; Falanga, M.; Schoenfeld, W. V. Proc. SPIE 2010, 7603, 76031B.
[35]
Yin, Z.; Zheng, Q.; Chen, S.; Cai, D.; Zhou, L.; Zhang, J. Adv. Energy Mater. 2014, 4, 1301404.
[36]
Zhai, Z.; Huang, X.; Xu, M.; Yuan, J.; Peng, J.; Ma, W. Adv. Energy Mater. 2013, 3, 1614.
文章导航

/