收稿日期: 2022-01-27
网络出版日期: 2022-03-23
基金资助
西北工业大学博士论文创新基金(CX2021110); 国家自然科学基金(21905228); 航空科学基金(2018ZF53065)
Construction and Application of Porous Ionic Liquids
Received date: 2022-01-27
Online published: 2022-03-23
Supported by
Innovation Foundation for Doctor Dissertation of NWPU(CX2021110); National Natural Science Foundation of China(21905228); Aeronautical Science Foundation of China(2018ZF53065)
多孔液体(Porous Liquids, PLs)是一类结合了多孔固体永久性孔隙与液态流动性优势的新材料. 自2007年, PLs的概念被首次提出以来, 其在合成策略与应用领域方面均取得了较大的突破. 然而, 传统的PLs因高黏度、高密度、高熔点与高原材料成本等缺陷极大程度制约了其在流动工业系统中的大规模应用. 因此, 迫切需要寻求理想的位阻溶剂用于制备先进的多孔液体. 离子液体(Ionic Liquids, ILs)因独特的可调节物理特性、非挥发性、高稳定性、易获得、经济性高、低再生能耗等特性, 使其成为构筑PLs中最具有应用前景的理想溶剂之一. 在过去的5年间, 基于多种ILs与先进多孔固体(如有机笼、金属有机框架、中空碳、沸石、多孔聚合物等)制备的多孔离子液体(Porous Ionic Liquids, PILs)被陆续报道. PILs独特的永久性孔隙、无溶剂挥发、再生能力强、黏度可调、低熔点、高稳定性等特性加快了其在气体吸附、分离、催化、萃取、分子分离等领域的快速发展. 本综述围绕PILs的构筑策略、特性、应用领域等阐述了其研究进展. 最后, 对PILs在制备中存在的挑战与未来的研究方向进行了归纳与展望.
李晓倩 , 张靖 , 苏芳芳 , 王德超 , 姚东东 , 郑亚萍 . 多孔离子液体的构筑及应用[J]. 化学学报, 2022 , 80(6) : 848 -860 . DOI: 10.6023/A22010053
The concept of porous liquids (PLs) was initially proposed and divided into three types in 2007 by James, which combine the merits of porous solids and flowing liquids. Recently, PLs have made great progress in preparations and applications. However, challenges for PLs still present to be addressed including their high density, viscosity melting temperatures, and materials cost, which severely limit their large-scale applications in flowing systems. Therefore, it is urgent to look for ideal sterically hindered solutions to construct PLs materials. Notably, the unique properties of ionic liquids (ILs), such as the tunable physicochemical properties for task-specific applications, economic, low regeneration energy requirements, enable them as promising candidates for constructing novel porous ionic liquids (PILs). Over the past five years, PILs based on ILs and existing advanced porous solids, such as porous organic cages (POCs), metal-organic frameworks (MOFs), porous carbons, zeolites, porous polymers, etc., have successively witnessed the achievement in synthesis strategies and applications. Notably, PILs exhibit remarkable properties including permanent porosity, negligible volatility, high thermal/chemical stability, non-corrosivity, adjustable melting temperature, viscosity, high gas solubilities, and fast gas diffusion, which have accelerated their applications in gas adsorption/separation, chiral separation, catalytic conversion, extraction, molecular separations, and other fields. In this review, we summarized recent research progress on the synthesis strategies, properties, and applications of PILs. In the end, challenges and future developments for PILs are summarized and prospected.
Key words: porous ionic liquids; porous liquids; ionic liquids; gas capture; separation; catalysis
[1] | Singh, G.; Lee, J.; Karakoti, A.; Bahadur, R.; Yi, J. B.; Zhao, D. Y.; AlBahily, K.; Vinu, A. Chem. Soc. Rev. 2020, 49, 4360. |
[2] | Wang, J. Y.; Huang., L.; Yang, R. Y.; Zhang, Z.; Wu, J. W.; Gao, Y. S.; Wang, Q.; O'Hare, D.; Zhong, Z. Y. Energy Environ. Sci. 2014, 7, 3478. |
[3] | Ning, H. L.; Yang, Z. Y.; Yin, Z. Q.; Wang, D. C.; Meng, Z. Y.; Wang, C. G.; Zhang, Y. T.; Chen, Z. P. ACS Appl. Mater. Interfaces 2021, 13, 17781. |
[4] | Kolle, J. M.; Fayaz, M.; Sayari, A. Chem. Rev. 2021, 121, 7280. |
[5] | Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A. H.; Eddaoudi, M. J. Am. Chem. Soc. 2015, 137, 13308. |
[6] | Jie, K. C.; Zhou, Y. J.; Ryan, H. P.; Dai, S.; Nitschke, J. R. Adv. Mater. 2021, 202005745. |
[7] | Little, M. A.; Cooper, A. I. Adv. Funct. Mater. 2020, 30, 1909842. |
[8] | Zou, L. F.; Sun, Y. J.; Che, S.; Yang, X. Y.; Wang, X.; Bosch, M.; Wang, Q.; Li, H.; Smith, M.; Yuan, S.; Perry, Z.; Zhou, H. C. Adv. Mater. 2017, 29, 1700229. |
[9] | Lin, Z. J.; Cao, R. Acta Chim. Sinica 2020, 78, 1309. (in Chinese) |
[9] | (林祖金, 曹荣, 化学学报, 2020, 78, 1309.) |
[10] | Peng, Z. K.; Ding, H. M.; Chen, R. F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681. (in Chinese) |
[10] | (彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77, 681.) |
[11] | Gao, W. L.; Liang, S. Y.; Wang, R. J.; Jiang, Q.; Zhang, Y.; Zheng, Q. W.; Xie, B. Q.; Toe, C. Y.; Zhu, X. C.; Wang, J. Y.; Huang, L.; Gao, Y. H; Wang, Z.; Jo, C. B.; Wang, Q.; Wang, L. D.; Liu, Y. F.; Louis, B.; Scott, J.; Roger, A. C.; Amal, R.; He, H.; Park, S. E. Chem. Soc. Rev. 2020, 49, 8584. |
[12] | O'Reilly, N.; Giri, N.; James, S. L. Chem. Eur. J. 2007, 13, 3020. |
[13] | Ahmad, M. Z.; Alessio, F. CRGSC 2021, 4, 100070. |
[14] | Egleston, B. D.; Luzyanin, K. V.; Brand, M. C.; Clowes, R.; Briggs, M. E.; Greenaway, R. L.; Cooper, A. I. Angew. Chem. Int. Ed. 2020, 59, 7362. |
[15] | Zhang, J. H.; Wei, M. J.; Lu, Y. L.; Wei, Z. W.; Wang, H. P.; Pan, M. ACS Appl. Energy Mater. 2020, 3, 12108. |
[16] | Wang, D. C.; Xin, Y. Y.; Yao, D. D.; Li, X. Q.; Ning, H. L.; Zhang, H. M.; Wang, Y. D.; Ju, X. Q.; He, Z. J.; Yang, Z. Y.; Fan, W. D.; Li, P. P.; Zheng, Y. P. Adv. Funct. Mater. 2021, 2104162. |
[17] | Li, Y. ChemistrySelect 2020, 5, 13664. |
[18] | Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Yao, D. D.; Zheng, Y. P. Prog. Chem. 2021, 33, 1874. (in Chinese) |
[18] | (王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍, 化学进展, 2021, 33, 1874.) |
[19] | Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Wang, F.; Wang, Y. D.; Zhang, W. R.; Zheng, Y. P.; Yao, D. D.; Yang, Z. Y.; Lei, X. F. Chem. Eng. J. 2021, 416, 127625. |
[20] | Liu, S.; Meng, L.; Fan, J. ChemistrySelect 2021, 6, 5027. |
[21] | Li, X. Q.; Yao, D. D.; Wang, D. C.; He, Z. J.; Tian, X. L.; Xin, Y. Y.; Su, F. F.; Wang, H. N.; Zhang, J.; Li, X. Y.; Li, M. T.; Zheng, Y. P. Chem. Eng. J. 2022, 429, 132296. |
[22] | Kumar, R.; Dhasaiyan, P.; Naveenkumar, P. M.; Sharma, K. P. Nanoscale Adv. 2019, 1, 4067. |
[23] | Zhang, J. H.; Chai, S. H.; Qiao, Z. A.; Mahurin, S. M.; Chen, J. H.; Fang, Y. X.; Wan, S.; Nelson, K.; Zhang, P. F.; Dai, S. Angew. Chem. Int. Ed. 2015, 54, 932. |
[24] | Greenaway, R. L.; Holden, D.; Eden, E. G. B.; Stephenson, A.; Yong, C. W.; Bennison, M. J.; Hasell, T.; Briggs, M. E.; James, S. L.; Cooper, A. I. Chem. Sci. 2017, 8, 2640. |
[25] | Kai, A.; Egleston, B. D.; Tarzia, A.; Clowes, R.; Briggs, M. E.; Jelfs, K. E.; Cooper, A. I.; Greenaway, R. L. Adv. Funct. Mater. 2021, 2106116. |
[26] | Cahir, J.; Tsang, M. Y.; Lai, B. B; Hughes, D.; Alam, M. A.; Jacquemin, J.; Rooney, D.; James, S. L. Chem. Sci. 2020, 11, 2077. |
[27] | Li, X. Q.; Wang, D. C.; Ning, H. L; Xin, Y. Y.; He, Z. J.; Su, F. F.; Wang, Y. D.; Zhang, J.; Wang, H. N.; Qian, L. W.; Zheng, Y. P.; Yao, D. D.; Li, M. T. Sep. Purif. Technol. 2021, 276, 119305. |
[28] | He, S. F.; Chen, L. H.; Cui, J.; Yuan, B.; Wang, H. L.; Wang, F.; Yu, Y.; Lee, Y. J.; Li, T. J. Am. Chem. Soc. 2019, 141, 19708. |
[29] | Fulvio, P. F.; Dai, S. Chem 2020, 6, 3263. |
[30] | Zeeshan, M.; Nozari, V.; Yagci, M. B.; Isik, T.; Unal, U.; Ortalan, V.; Keskin, S.; Uzun, A. J. Am. Chem. Soc. 2018, 140, 10113 |
[31] | Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621. |
[32] | Mota-Martinez, M. T.; Brandl, P.; Hallett, J. P.; Mac Dowell, N. Mol. Syst. Des. Eng. 2018, 3, 560. |
[33] | Gomes, M. C.; Pison, L.; Cervinka, C.; Padua, A. Angew. Chem. Int. Ed. 2018, 57, 11909. |
[34] | Avila, J.; Červinka, C.; Dugas, P. Y.; Pádua, A. A. H.; Gomes, M. C. Adv. Mater. Interfaces 2021, 2001982. |
[35] | McCrellis, C.; Taylor, S. F. R.; Jacquemin, J.; Hardacre, C. J. Chem. Eng. Data 2016, 61, 1092. |
[36] | Bhattacharyya, S.; Filippov, A.; Shah, F. U. Phys. Chem. Chem. Phys. 2017, 19, 31216. |
[37] | Peplow, M. C&EN 2020, 98, 9. |
[38] | Li, P. P.; Schott, J. A.; Zhang, J. S.; Mahurin, S. M.; Sheng, Y. J.; Qiao, Z. A.; Hu, X. X.; Cui, G. K.; Yao, D. D.; Brown, B.; Zheng, Y. P.; Dai, S. Angew. Chem. Int. Ed. 2017, 56, 14958. |
[39] | Su, F. F.; Li, X. Q.; Wang, Y. D.; He, Z. J.; Fan, L.; Wang, H. N.; Xie, J. L.; Zheng, Y. P.; Yao, D. D. Sep. Purif. Technol. 2021, 277, 119410. |
[40] | Hasell, T.; Copper, A. I. Nat. Rev. Mater. 2016, 1, 16053. |
[41] | Jie, K. C.; Onishi, N.; Schott, J. A.; Popovs, I.; Jiang, D. E.; Mahurin, S.; Dai, S. Angew. Chem. Int. Ed. 2020, 59, 2268. |
[42] | Ma, L. L.; Haynes, C. J. E.; Grommet, A. B.; Walczak, A.; Parkins, C. C.; Doherty, C. M.; Longley, L.; Tron, A.; Stefankiewicz, A. R.; Bennett, T. D.; Nitschke, J. R. Nat. Chem. 2020, 12, 270. |
[43] | Zou, Y. H.; Huang, Y. B.; Si, D. H.; Yin, Q.; Wu, Q. J.; Weng, Z. X.; Cao, R. Angew. Chem. Int. Ed. 2021, 60, 20915. |
[44] | Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Ning, H. L.; Wang, Y. D.; Yao, D. D.; Zheng, Y. P.; Meng, Z. Y.; Yang, Z. Y.; Pan, Y. T.; Li, P. P.; Wang, H. N.; He, Z. J.; Fan, W. D. ACS Appl. Mater. Interfaces 2021, 13, 2600. |
[45] | Wang, D. X.; Xin, Y. Y.; Li, X. Q.; Wang, F.; Wang, Y. D.; Zhang, W. R.; Zheng, Y. P.; Yao, D. D.; Yang, Z. Y.; Lei, X. F. Chem. Eng. J. 2020, 416, 127625. |
[46] | Giri, N.; Del Popolo, M. G.; Melaugh, G.; Greenaway, R. L.; Ratzke, K.; Koschine, T.; Pison, L.; Gomes, M. F.; Cooper, A. I.; James, S. L. Nature 2015, 527, 216. |
[47] | Kearsey, R. J.; Alston, B. M.; Briggs, M. E.; Greenaway, R. L.; Cooper, A. I. Chem. Sci. 2019, 10, 9454. |
[48] | Deng, Z.; Ying, W.; Gong, K.; Zeng, Y. J.; Yan, Y. G.; Peng, X. S. Small 2020, 16, 1907016. |
[49] | Shan, W. D.; Fulvio, P. F.; Kong, L. Y.; Schott, J. A.; Do-Thanh, C. L.; Tian, T.; Hu, X. X.; Mahurin, S. M.; Xing, H. B.; Dai, S. ACS Appl. Mater. Interfaces 2018, 10, 32. |
[50] | Liu, S. J.; Liu, J. D.; Hou, X. D.; Xu, T. T.; Tong, J.; Zhang, J. X.; Ye, B. J.; Liu, B. Langmuir 2018, 34, 3654. |
[51] | Li, P. P.; Chen, H.; Schott, J. A.; Li, B.; Zheng, Y. P.; Mahurin, S. M.; Jiang, D. E.; Cui, G. K.; Hu, X. X.; Wang, Y. Y.; Li, L. W.; Dai, S. Nanoscale 2019, 11, 1515. |
[52] | Lai, B. B.; Cahir, J.; Tsang, M. Y.; Jacquemin, J.; Rooney, D.; Murrer, B.; James, S. L. ACS Appl. Mater. Interfaces 2020, 13, 932. |
[53] | Zhao, X. M.; Yuan, Y. H.; Li, P. P.; Song, Z. J.; Ma, C. X.; Pan, D.; Wu, S. D.; Ding, T.; Guo, Z. H.; Wang, N. Chem. Commun. 2019, 55, 13179. |
[54] | Li, X. Q.; Wang, D. C.; He, Z. J.; Su, F. F.; Zhang, N.; Xin, Y. Y.; Wang, H. N.; Tian, X. L.; Zheng, Y. P.; Yao, D. D.; Li, M. T. Chem. Eng. J. 2021, 417, 129239. |
[55] | Wang, Z. H.; Zhao, P. P.; Wu, J.; Gao, J.; Zhang, L. Z.; Xu, D. M. New J. Chem. 2021, 45, 8557. |
[56] | Li, P. P.; Wang, D. C.; Zhang, L.; Liu, C.; Wu, F.; Wang, Y. K.; Wang, Z.; Zhao, Z. H.; Wu, W. W.; Liang, Y. P.; Li, Z. M.; Wang, W. D.; Zheng, Y. P. Small 2021, 2006687. |
[57] | Avila, J.; Lepre, L. F.; Santini, C. C.; Tiano, S. M.; Denis-Quanquin, S.; Chung Szeto, K.; Padua, A. A. H.; Gomes, M. C. Angew. Chem. Int. Ed. 2021, 60, 12876. |
[58] | Wang, Y. J.; Liu, Y. Z.; Li, H.; Guan, X. Y.; Xue, M.; Yan, Y. S.; Valtchev, V.; Qiu, S. L.; Fang, Q. R. J. Am. Chem. Soc. 2020, 142, 3736. |
[59] | Mow, R. E.; Lipton, A. S.; Shulda, S.; Gaulding, E. A.; Gennett, T.; Braunecker, W. A. J. Mater. Chem. A 2020, 8, 23455. |
[60] | Yang, N.; Lu, L. J.; Zhu, L. H.; Wu, P. W.; Tao, D. J.; Gong, J. H.; Chen, L. L.; Chao, Y. H.; Zhu, W. S. Inorg. Chem. Front. 2022, 9, 165. |
[61] | Zhou, Y.; Jocasta, A.; Berthet, N.; Legrand, S.; Santini, C. C.; Gomes, C. C.; Dufaud, V. Chem. Commun. 2021, 57, 7922. |
[62] | Chen, H.; Yang, Z. Z.; Peng, H. G.; Jie, K. C.; Li, P. P.; Ding, S. M.; Guo, W.; Suo, X.; Liu, J. X.; Yan, R.; Liu, W. M.; Do-Thanh, C. L.; Wang, H. M.; Wang, Z. D.; Han, L.; Yang, W. M.; Dai, S. Chem 2021, 7, 3340. |
[63] | Liu, W. Q.; Li, Z.; Xia, C. G. Prog. Chem. 2018, 30, 1143. (in Chinese) |
[63] | (刘文巧, 李臻, 夏春谷, 化学进展, 2018, 30, 1143.) |
/
〈 |
|
〉 |