单斜ZnP2负极材料的锂化机理及性能
收稿日期: 2021-12-09
网络出版日期: 2022-03-29
基金资助
大连市重点领域创新团队支持计划(2019RT15)
Lithiation Mechanism and Performance of Monoclinic ZnP2 Anode Materials
Received date: 2021-12-09
Online published: 2022-03-29
Supported by
Innovation Team Support Plan in Key Areas of Dalian City(2019RT15)
过渡金属磷化物电位低且比容量高, 是有发展前景的锂离子电池(LIBs)负极材料. 其中, ZnP2属于双活性负极材料, Zn与P都能与Li+发生反应, 储Li+性能更具有竞争力. 但是, 对于ZnP2的锂化机理及产物尚不明确. 采用第一性原理计算和电化学测试方法研究了ZnP2的电子性质和电化学性能, 通过理论计算和实验测试相结合阐述了ZnP2的锂化机制. 首先, 以密度泛函理论(DFT)计算揭示了ZnP2的锂化机理、Li+扩散路径、势垒和理论比容量(1477 mAh/g). 其次, 通过直流电弧等离子体法及固相烧结法合成ZnP2, 并测试其首圈放电曲线, 显示放电容量为1439 mAh/g, 与理论计算结果相近. 此外, 薄膜X射线衍射(XRD)检测最终产物成分为LiZn和Li3P, 与DFT计算结果一致.
毕文超 , 张琳锋 , 陈健 , 田瑞雪 , 黄昊 , 姚曼 . 单斜ZnP2负极材料的锂化机理及性能[J]. 化学学报, 2022 , 80(6) : 756 -764 . DOI: 10.6023/A21120552
Transition metal phosphides are promising anode materials for lithium ion batteries (LIBS) because of their low potential and high specific capacity. Among them, ZnP2 is a dual active anode material, and both Zn and P can react with Li, which is more competitive in capacity. However, the lithiation mechanism and the reaction products of ZnP2 are still unclear. In this work, the electronic and electrochemical properties of ZnP2 were studied by first-principle calculations and electrochemical measurement. The combination of theoretical calculations and experimental tests demonstrated the lithiation mechanism of ZnP2. Firstly, density functional theory (DFT) calculations revealed the lithiation reaction products, lithium diffusion path, diffusion barrier and theoretical lithium storage capacity (1477 mAh/g) of ZnP2. The calculation of the binding energy proved that the formation energies of LiZn and Li3P were thermodynamically lower than that of LinZnP2. The charge density difference analysis showed that the Zn—P bonds and P—P bonds were gradually broken during the Li+ insertion process, which was accompanied by the formation of Li—P bonds and Li—Zn bonds, and these all confirmed the conversion reaction occurred after Li+ was inserted into ZnP2. The calculation result of the density of states proved that ZnP2 changed from a semiconductor to a conductor with the insertion of Li+. The diffusion energy barrier was higher than that of general layered materials, which will reduce the rate performance of LIBs. Secondly, ZnP2 nanosheets were synthesized by the direct current (DC) arc plasma and solid phase sintering method. The electrochemical test showed that the rate performance and cycle performance were slightly worse, which proved the correctness of the diffusion barrier results. The discharge curve showed that the discharge capacity of the first cycle is similar to the theoretical calculation result, which is 1439 mAh/g. Finally, the components of the discharge products detected by the thin film X-ray diffraction (XRD) were LiZn and Li3P, which were consistent with the DFT calculation results.
[1] | Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013. |
[2] | Goodenough, J. B.; Park, K. S. J. Am. Chem. Soc. 2013, 135, 1167. |
[3] | Lu, L.; Han, X.; Li, J.; Ouyang, M. J. Power Sources 2013, 226, 272. |
[4] | Qiu, K.; Yan, M. X.; Zhao, S. W.; An, S. L.; Wang, W.; Jia, G. X. Acta Chim. Sinica 2021, 79, 1146. (in Chinese) |
[4] | (邱凯, 严铭霞, 赵守旺, 安胜利, 王玮, 贾桂霄, 化学学报, 2021, 79, 1146.) |
[5] | Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. |
[6] | Zhou, X.; Liu, Q.; Jiang, C.; Ji, B.; Ji, X.; Tang, Y.; Cheng, H.-M. Angew. Chem., nt. Ed. 2019, 59, 3802. |
[7] | Li, T. X.; Li, D. L.; Zhang, Q. B.; Gao, J. H.; Kong, X. Z.; Fan, X. Y.; Gou, L. Acta Chim. Sinica 2021, 79, 678. (in Chinese) |
[7] | (李童心, 李东林, 张清波, 高建行, 孔祥泽, 樊小勇, 苟蕾, 化学学报, 2021, 79, 678.) |
[8] | Dahn, J. R.; Zheng, T.; Liu, Y.; Xue, J. Science 1995, 270, 590. |
[9] | Zheng, S. Y.; Dong, F.; Pang, Y. P.; Han, P.; Yang, J. J. Inorg. Mater. 2020, 35, 1295. (in Chinese) |
[9] | (郑时有, 董飞, 庞越鹏, 韩盼, 杨俊和, 无机材料学报, 2020, 35, 1295.) |
[10] | Marino, C.; Debenedetti, A.; Fraisse, B.; Favier, F.; Monconduit, L. Electrochem. Commun. 2011, 13, 346. |
[11] | Wang, S. L.; Yang, G. R.; SalmanNasir, M.; Wang, X. J.; Wang, J. N.; Yan, W. Acta Phys.-Chim. Sin. 2021, 37, 28. (in Chinese) |
[11] | (王思岚, 杨国锐, SalmanNasir, Muhammad, 王筱珺, 王嘉楠, 延卫, 物理化学学报, 2021, 37, 28.) |
[12] | Sun, J.; Zheng, G.; Lee, H.; Liu, N.; Wang, H.; Yao, H.; Yang, W.; Cui, Y. Nano Lett. 2014, 14, 4573. |
[13] | Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ji, H. R. Adv. Mater. 2013, 25, 3010. |
[14] | Puziy, O.; Poddubnaya, A.; Martnez-Alonso, F.; Suarez-Garca; Tascon, J. M. D. Carbon 2002, 40, 1507. |
[15] | Jing, B.; Xi, B.; Mao, H.; Lin, Y.; Ma, X.; Feng, J.; Xiong, S. Adv. Mater. 2018, 1802310. |
[16] | Wu, C.; Kopold, P.; Aken, P. A. V.; Maier, J.; Yu, Y. Adv. Mater. 2017, 29, 1604015. |
[17] | Hou, B. H.; Wang, Y. Y.; Ning, Q. L.; Fan, C. Y.; Xi, X. T.; Yang, X. Nanoscale 2019, 11, 1304. |
[18] | Wang, X.; Chen, K.; Wang, G.; Liu, X.; Wang, H. ACS Nano 2017, 11, 11602. |
[19] | Pralong, V.; Souza, D.; Leung, K. T.; Nazar, L. F. Electrochem. Commun. 2002, 4, 516. |
[20] | Hall, J. W.; Membreno, N.; Jing, W.; Celio, H.; Jones, R. A. J. Am. Chem. Soc. 2012, 134, 5532. |
[21] | Kim, K. H.; Hong, S. H. Adv. Energy Mater. 2021, 11, 2003609. |
[22] | Hayashi, A.; Inoue, A.; Tatsumisago, M. J. Power Sources 2009, 189, 669. |
[23] | Kim, S. O.; Manthira, A. ACS Appl. Mater. Interfaces 2017, 9, 16221. |
[24] | Chen, M.; Zhou, W.; Qi, M.; Yin, J.; Xia, X. J. Power Sources 2017, 342, 964. |
[25] | Pfeiffer, H.; Tancret, F.; Brousse, T. Electrochim. Acta 2005, 50, 4763. |
[26] | Lu, Y.; Wang, X.; Mai, Y.; Xiang, J.; Zhang, H.; Li, L.; Gu, C.; Tu, J.; Mao, S. X. J. Phys. Chem. C 2012, 116, 22217. |
[27] | Liu, J.; Sun, W.; Ran, Y.; Zhou, S.; Zhang, L.; Wu, A.; Huang, H.; Yao, M. Appl. Surf. Sci. 2021, 550, 149247. |
[28] | Li, W.; Li, H.; Lu, Z.; Gan, L.; Ke, L.; Zhai, T.; Zhou, H. Energy Environ. Sci. 2015, 8, 3629. |
[29] | Hwang, H.; Kim, M. G.; Kim, Y.; Martin, S. W.; Cho, J. Energy Environ. Sci. J. Mater. Chem. 2007, 3161. |
[30] | Park, C.; Sohn, H. Chem. Mater. 2008, 20, 6319. |
[31] | Liu, J.; Wu, A.; Tian, R.; Camacho, R. P.; Zhou, S.; Huang, S.; Yao, M. Mater. Today Energy 2020, 18, 100545. |
[32] | Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. APL Mater. 2013, 1, 011002. |
[33] | Fleet, M. E.; White, J. C. J. Mater. Res. 1986, 1, 187. |
[34] | Tian, R.; Liu, C.; Zhang, G.; Wu, A.; Yao, M.; Huang, H. Appl. Surf. Sci. 2021, 553, 149448. |
[35] | Manju, M. S.; Thomas, S.; Lee, S. U.; Madam, A. K. Appl. Surf. Sci. 2020, 541, 148417. |
[36] | Butler, K.; Gautam, G. S.; Canepa, P. NPJ Comput Mater. 2019, 5, 19. |
[37] | Zhang, Z. F.; Yu, Q. Y.; Wu, L.; Sun, L. J.; Peng, J. H. J. Chongqing Univ. 2012, 35, 83. (in Chinese) |
[37] | (张正富, 余秋雁, 伍林, 孙力军, 彭金辉, 重庆大学学报, 2012, 35, 83.) |
[38] | Fleet, M. E.; Mowles, T. A. Acta Crystallogr. 1984, 40, 1778. |
[39] | Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F. M.; Cakir, D. J. Mater. Chem. A 2018, 6, 2337. |
[40] | Li, P. J.; Zhou, W. W.; Tang, Y. H.; Zhang, H.; Shi, S. Q. Acta Phys. Sin. 2010, 6. (in Chinese) |
[40] | (李沛娟, 周薇薇, 唐元昊, 张华, 施思齐, 物理学报, 2010, 6.) |
[41] | Fan, C. L.; Cheng, X. L.; Zhang, H. Phys. Status Solidi 2010, 246, 77. |
[42] | Henkelman, G.; Uberuaga, B. P. J. Phys. Chem. C 2000, 113, 9901. |
[43] | Harper, A. F.; Evans, M. L.; Darby, J. P.; Bora, K.; Koer, C. P.; Nelson, J. R.; Morris, A. J. Johnson Matthey Technol. Rev. 2020, 64, 103. |
[44] | Lin, C. J.; Zheng, F.; Zhu, Z. Z. Acta Phys. Sin. 2019, 68, 8. (in Chinese) |
[44] | (林传金, 郑锋, 朱梓忠, 物理学报, 2019, 68, 8.) |
[45] | Chen, H.; Hua, Y.; Luo, N.; He, X.; Li, Y.; Zhang, Y.; Chen, W.; Huang, S. J. Phys. Chem. C 2020, 124, 7031. |
[46] | Zhao, S.; Kang, W.; Xue, J. J. Mater. Chem. A 2014, 2, 19046. |
[47] | Hardikar, R. P.; Das, D.; Han, S. S.; Lee, K. R.; Singh, A. K. Phys. Chem. Chem. Phys. 2014, 16, 16502. |
[48] | Zhang, W.; Liu, S.; Chen, J.; Hu, F.; Wang, X.; Huang, H.; Yao, M. ACS Appl. Mater. Interfaces 2021, 13, 22341. |
[49] | Fang, Y.; Zhang, Y.; Miao, C.; Zhu, K.; Chen, Y.; Du, F.; Yin, J.; Ye, K.; Cheng, K.; Yan, J.; Wang, G.; Cao, D. Nano-micro. Lett. 2020, 12, 128. |
[50] | Du, F.; Jin, X.; Chen, J.; Hua, Y.; Cao, M.; Zhang, L.; Li, J.; Zhang, L.; Jin, J.; Wu, C. J. Nanopart. Res. 2014, 16, 1. |
[51] | Kim, Y. U.; Lee, C. K.; Kang, T. J. Electrochem. Soc. 2004, 151, A933. |
[52] | Berland, K.; Hyldgaard, P. Phys. Rev. B 2014, 89, 035412. |
[53] | Kresse, G. G.; Furthmüller, J. J. Phys. Rev. B 1996, 54, 11169. |
[54] | Chl, P. Phys. Rev. B 1994, 50, 1795. |
[55] | Paier, J.; Hirschl, R.; Marsman, M.; Georg, K. J. Phys. Chem. C 2005, 122, 234102. |
[56] | Broderick, S. R.; Rajan, K. Europhys. Lett. 2011, 95, 57005. |
[57] | Momma, K.; Izumi, F. J. Appl. Crystallogr. 2011, 44, 1272. |
/
〈 |
|
〉 |