可蒸镀自旋交叉配合物的薄膜与器件
收稿日期: 2022-05-06
网络出版日期: 2022-07-04
基金资助
国家自然科学基金(52173183); 湖北省自然科学基金(2021CFB598); 中国科学院高分子物理与化学国家重点实验室开放课题(2020-13)
Thin Films and Devices of Evaporable Spin Crossover Complexes
Received date: 2022-05-06
Online published: 2022-07-04
Supported by
National Natural Science Foundation of China(52173183); Natural Science Foundation of Hubei Province(2021CFB598); Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Chinese Academy of Sciences(2020-13)
自旋交叉配合物在温度、压力、光照和磁场等刺激下可以发生高低自旋态之间的可逆转变, 通常还伴随着颜色、体积和电导率变化以及热滞等效应, 因此这类材料在光热开关、传感器、显示和存储等领域具有潜在的应用. 由于可以获得高质量的超洁净薄膜, 高真空蒸镀工艺常用于分子电子学与分子磁学等的器件制备, 目前报道的可蒸镀自旋交叉配合物种类较少, 大大限制了自旋交叉配合物的器件应用. 针对可蒸镀自旋交叉配合物的薄膜与器件进行了系统的综述, 介绍了几种主要的适于高真空蒸镀的自旋交叉配合物, 结合不同的表征手段分析了衬底对分子薄膜自旋转变特性的影响, 并针对相关的概念性器件进行了讨论, 最后对自旋交叉配合物在器件应用中存在的难点和未来的发展趋势进行了展望和评述, 希望能够为自旋交叉领域的器件应用提供一些借鉴.
张琪 , 江梦云 , 刘天一 , 曾意迅 , 石胜伟 . 可蒸镀自旋交叉配合物的薄膜与器件[J]. 化学学报, 2022 , 80(9) : 1351 -1363 . DOI: 10.6023/A22050212
Spin states of the spin crossover complexes can be switched reversibly between high spin and low spin under different stimulations such as temperature, pressure, irradiation and magnetic field. Generally, it is also accompanied by the change of color, volume and conductivity, and the thermo-induced magnetic hysteresis. Therefore, they show potential applications in optical/thermal switches, sensors, display, and memory devices. Additionally, high-vacuum evaporation is generally applied to fabricate devices in molecular electronics/spintronics with high-quality and ultra-clean films. However, there are very few evaporable spin crossover complexes which greatly limit their applications. In this paper, we systematically summarize the recent progress of evaporable spin crossover complexes in films and devices. Several reported evaporable spin crossover complexes are discussed, and the effect of the substrate on spin transition has been investigated with different techniques, furthermore, the related conceptual devices are discussed. At the end, the existed difficulties and future trends of spin crossover complexes in device applications are prospected and reviewed to provide useful guidance for the future device developments.
| [1] | Waldrop M. M. Nature 2016, 530, 144. |
| [2] | Lefter C.; Rat S.; Costa J. S.; Manrique-Juárez M. D.; Quintero C. M.; Salmon L.; Séguy I.; Leichle T.; Nicu L.; Demont P.; Rotaru A.; Molnár G.; Bousseksou A. Adv. Mater. 2016, 28, 7508. |
| [3] | Bousseksou A.; Molnár G.; Salmon L.; Nicolazzi W. Chem. Soc. Rev. 2011, 40, 3313. |
| [4] | Shepherd H. J.; Molnár G.; Nicolazzi W.; Salmon L.; Bousseksou A. Eur. J. Inorg. Chem. 2013, 5-6, 653. |
| [5] | Sato O. Nat. Chem. 2016, 8, 644. |
| [6] | Quintero C. M.; Félix G.; Suleimanov I.; Costa J. S.; Molnár G.; Salmon L.; Nicolazzi W.; Bousseksou A. Beilstein J. Nanotechnol. 2014, 5, 2230. |
| [7] | Wang J. L.; Zhu H. L.; Liu Q.; Duan C. Y.; Liu T. Sci. Sin. Chim. 2017, 47, 724.(in Chinese) |
| [7] | (王俊丽, 朱海浪, 刘强, 段春迎, 刘涛, 中国科学: 化学, 2017, 47, 724.) |
| [8] | Huang Y. X.; Hu H. J.; Wei R. J.; Ning G. H.; Li D. Cryst. Growth Des. 2021, 21, 4587. |
| [9] | Galet A.; Gaspar A. B.; Muñoz M. C.; Bukin G. V.; Levchenko G.; Real J. A. Adv. Mater. 2005, 17, 2949. |
| [10] | Bartual-Murgui C.; Akou A.; Thibault C.; Molnár G.; Vieu C.; Salmon L.; Bousseksou A. J. Mater. Chem. C 2015, 3, 1277. |
| [11] | Gao D. M.; Liu Y.; Miao B.; Wei C.; Ma J. G.; Cheng P.; Yang G. M. Inorg. Chem. 2018, 57, 12475. |
| [12] | Poggini L.; Gonidec M.; González-Estefan J. H.; Pecastaings G.; Gobaut B.; Rosa P. Adv. Electron. Mater. 2018, 4, 1800204. |
| [13] | Liu T.; Zheng H.; Kang S.; Shiota Y.; Hayami S.; Mito M.; Sato O.; Yoshizawa K.; Kanegawa S.; Duan C. Nat. Commun. 2013, 4, 2863. |
| [14] | Seredyuk M.; Gaspar A. B.; Ksenofontov V.; Reiman S.; Galyametdinov Y.; Haase W.; Rentschler E.; Gütlich P. Chem. Mater. 2006, 18, 2513. |
| [15] | Shimatani K.; Tajima H.; Komino T.; Ikeda S.; Matsuda M.; Ando Y.; Akiyama H. A. Chem. Lett. 2005, 34, 948. |
| [16] | Matsuda M.; Kiyoshima K.; Uchida R.; Kinoshita N.; Tajima H. Thin Solid Films. 2013, 531, 451. |
| [17] | Kahn O.; Martinez C. J. Science 1998, 279, 44. |
| [18] | Hao G.; Mosey A.; Jiang X.; Yost A. J.; Sapkota K. R.; Wang G. T.; Zhang X.; Zhang J.; N'Diaye A. T.; Cheng R.; Xu X.; Dowben P. A. Appl. Phys. Lett. 2019, 114, 032901. |
| [19] | Wang L. F.; Lv B. H.; Wu F. T.; Huang G. Z.; Ruan Z. Y.; Chen Y. C.; Liu M.; Ni Z. P.; Tong M. L. Sci. China Chem. 2022, 1, 120. |
| [20] | Cambi L.; Cagnasso A. Atti Accad. Lincei 1931, 13, 809. |
| [21] | Baker W. A.; Bobonic H. M. Inorg. Chem. 1963, 2, 1071. |
| [22] | Wang R. G.; Meng Y. S.; Gao F. F.; Gao W. Q.; Liu C. H.; Li A. Y.; Liu T.; Zhu Y. Y. Dalton. Trans. 2021, 50, 3369. |
| [23] | Wen W.; Meng Y. S.; Jiao C. Q.; Liu Q.; Zhu H. L.; Li Y. M.; Oshio H.; Liu T. Angew. Chem., Int. Ed. 2020, 59, 16393. |
| [24] | Zhao X. H.; Shao D.; Chen J. T.; Gan D. X.; Yang J.; Zhang Y. Z. Sci. China Chem. 2022, 65, 532. |
| [25] | Chen L. P.; Yan Z.; Wang Z. Q.; Wang Y. X. J. At. Mol. Phys. 2022, 39, 47. |
| [26] | Chen W.; Chen R. F.; Li Y. T.; Yu Z. Z.; Xu N.; Bian B. A.; Li X. A.; Wang L. H. Acta Phys. Sin. 2017, 66, 198503.(in Chinese) |
| [26] | (陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉, 物理学报, 2017, 66, 198503.) |
| [27] | Liu L. L.; Wang J. Chem. J. Chin. Univ. 2019, 40, 2128.(in Chinese) |
| [27] | (刘楠楠, 王建, 高等学校化学学报, 2019, 40, 2128.) |
| [28] | Chen S. H.; Shu X. Y.; Zhou J.; Zhou C. H.; Xie Q. D.; Zhao T. Y.; Liu L.; Lin W. N.; Chen J. S. Sci. China Mater. 2021, 64, 2029. |
| [29] | Wang S.; Cui L. F.; Li X. A.; Wang L. H.; Huang W. Chin. J. Inorg. Chem. 2013, 29, 1733. |
| [30] | Halepoto D. M.; Larkworthy L. F.; Povey D. C.; Ramdas V. Inorg. Chim. Acta 1989, 162, 71. |
| [31] | Kröber J.; Codjovi E.; Kahn O.; Grolière F.; Jay C. J. Am. Chem. Soc. 1993, 115, 9810. |
| [32] | Kröber J.; Audibre J.; Claude R.; Codjovi E.; Kahn O.; Grolibre F.; Jay C.; Bousseksou A.; Linarbs J.; Varret F.; Gonthier-vassal A. Chem. Mater. 1994, 6, 1404. |
| [33] | Alam M. S.; Stocker M.; Gieb K.; Müller P.; Haryono M.; Student K.; Grohmann A. Angew. Chem., Int. Ed. 2010, 49, 1159. |
| [34] | Shi S. W.; Schmerber G.; Arabski J.; Beaufrand J.; Kim D. J.; Bowen M.; Kemp N. T.; Viart N.; Rogez G. Appl. Phys. Lett. 2009, 95, 043303. |
| [35] | Palamarciuc T.; Oberg J. C.; ElHallak F.; Hirjibehedin C. F.; Serri M.; Heutz S.; Létard J. F.; Rosa P. J. Mater. Chem. 2012, 22, 9690. |
| [36] | Naggert H.; Bannwarth A.; Chemnitz S.; Von H. T.; Quandt E.; Tuczek F. Dalton. Trans. 2011, 40, 6364. |
| [37] | Davesne V.; Gruber M.; Studniarek M.; Doh W. H.; Zafeiratos S.; Joly L.; Sirotti F.; Silly M. G.; Gaspar A. B.; Real J. A.; Schmerber G.; Bowen M.; Weber W.; Boukari S.; Costa V. D.; Arabski J.; Wulfhekel W.; Beaurepaire E. J. Chem. Phys. 2015, 142, 194702. |
| [38] | Jasper-Tönnies. T.; Gruber, M.; Karan, S.; Jacob, H.; Tuczek, F.; Berndt, R. J. Phys. Chem. Lett. 2017, 8, 1569. |
| [39] | Jasper-Toennies T.; Gruber M.; Karan S.; Jacob H.; Tuczek F.; Berndt R. Nano Lett. 2017, 17, 6613. |
| [40] | Shalabaeva V.; Rat S.; Maria D.; Manrique-Juarez A. C. B. J. Mater. Chem. C 2017, 5, 4419. |
| [41] | Rohlf S.; Gruber M.; Flo B. M.; Grunwald J.; Jarausch S.; Diekmann F.; Kalla M.; Jasper-toennies T.; Buchholz A.; Plass W. J. Phys. Chem. Lett. 2018, 9, 1491. |
| [42] | Atzori M.; Poggini L.; Squillantini L.; Cortigiani B. J. Mater. Chem. C 2018, 6, 8885. |
| [43] | Mahfoud T.; Molnár G.; Cobo S.; Salmon L.; Thibault C.; Vieu C.; Demont P.; Bousseksou A. Appl. Phys. Lett. 2011, 99, 053307. |
| [44] | Ossinger S.; Kipgen L.; Naggert H.; Bernien M.; Britton A. J.; Nickel F.; Arruda L. M.; Kumberg I.; Engesser T. A.; Golias E.; Näther C.; Tuczek F.; Kuch W. J. Phys. Condens. Mat. 2020, 32, 114003. |
| [45] | Cavallini M. Phys. Chem. Chem. Phys. 2012, 14, 11867. |
| [46] | Haraguchi T.; Otsubo K.; Kitagawa H. Eur. J. Inorg. Chem. 2018, 16, 1697. |
| [47] | Mallah T.; Cavallini M. Comptes Rendus Chim. 2018, 21, 1270. |
| [48] | Kipgen L.; Bernien M.; Tuczek F.; Kuch W. Adv. Mater. 2021, 24, 2008141. |
| [49] | Soyer H.; Mingotaud C.; Boillot M.; Delhaes P. Langmuir 1998, 14, 5890. |
| [50] | Cobo S.; Molnár G.; Real J. A.; Bousseksou A. Angew. Chem., Int. Ed. 2006, 45, 5786. |
| [51] | Molnár G.; Cobo S.; Real J. A.; Carcenac F.; Daran E.; Vieu C.; Bousseksou A. Adv. Mater. 2007, 19, 2163. |
| [52] | Matsuda M.; Tajima H. Chem. Lett. 2007, 36, 700. |
| [53] | Tanaka D.; Aketa N.; Tanaka H.; Tamaki T.; Inose T.; Akai T.; Toyama H.; Sakata O.; Tajiri H.; Ogawa T. Chem Commun. 2014, 50, 10074. |
| [54] | Félix G.; Abdul-Kader K.; Mahfoud T.; Guralskiy I. A.; Nicolazzi W.; Salmon L.; Molnár G.; Bousseksou A. J. Am. Chem. Soc. 2011, 133, 15342. |
| [55] | Tanaka D.; Aketa N.; Tanaka H.; Horike S.; Fukumori M.; Tamaki T.; Inose T.; Akai T.; Toyama H.; Sakata O.; Tajiri H.; Ogawa T. Dalton. Trans. 2019, 48, 7074. |
| [56] | Cavallini M.; Bergenti I.; Milita S.; Kengne J. C.; Gentili D.; Ruani G.; Salitros I.; Meded V.; Ruben M. Langmuir 2011, 27, 4076. |
| [57] | Hayami S.; Gu Z. Z.; Yoshiki H.; Fujishima A.; Sato O. J. Am. Chem. Soc. 2001, 123, 11644. |
| [58] | Molnár G.; Cobo S.; Real J. A.; Carcenac F.; Daran E.; Vieu C.; Bousseksou A. Adv. Mater. 2007, 19, 2163. |
| [59] | Tangoulis V.; Polyzou C. D.; Gkolfi P.; Lalioti N.; Malina O.; Polaskova M. Dalton. Trans. 2021, 50, 3109. |
| [60] | Poggini L.; Milek M.; Londi G.; Naim A.; Poneti G.; Squillantini L.; Magnani A.; Totti F.; Rosa P.; Khusniyarov M. M.; Mannini M. Mater. Horizons. 2018, 5, 506. |
| [61] | Kumar K. S.; Ruben M. Angew. Chem., Int. Ed. 2021, 60, 7502. |
| [62] | Gruber M.; Miyamachi T.; Davesne V.; Bowen M.; Boukari S.; Wulfhekel W.; Beaurepaire E.; Wulfhekel W.; Alouani M. J. Chem. Phys. 2017, 146, 092312. |
| [63] | Miyamachi T.; Gruber M.; Davesne V.; Bowen M.; Boukari S.; Joly L.; Scheurer F.; Rogez G.; Yamada T. K.; Ohresser P.; Beaurepaire E.; Wulfhekel W. Nat. Commun. 2012, 3, 938. |
| [64] | Zhang Y. C. Phys. Chem. Chem. Phys. 2021, 23, 23758. |
| [65] | Real J. A.; Munoz M. C.; Faus J.; Solans X. Inorg. Chem. 1997, 1669, 3008. |
| [66] | Gopakumar T. G.; Matino F.; Naggert H.; Bannwarth A.; Tuczek F.; Berndt R. Angew. Chem., Int. Ed. 2013, 52, 3796. |
| [67] | Gopakumar T. G.; Bernien M.; Naggert H.; Matino F.; Hermanns C. F.; Bannwarth A.; Mühlenberend S.; Krüger A.; Krüger D.; Nickel F.; Walter W.; Berndt R.; Kuch W.; Tuczek F. Chem. Eur. J. 2013, 111, 15702. |
| [68] | Bernien M.; Naggert H.; Arruda L. M.; Kipgen L.; Nickel F.; Miguel J.; Hermanns C. F.; Kru A.; Kru D.; Tuczek F.; Kuch W. ACS Nano 2015, 9, 8960. |
| [69] | Ossinger S.; Naggert H.; Kipgen L.; Jasper-toennies T.; Rai A. J. Phys. Chem. C 2017, 121, 1210. |
| [70] | Manrique-Juarez M. D.; Rat S.; Mathieu F.; Saya D.; Séguy I.; Leïchlé T.; Nicu L.; Salmon L.; Molnár G.; Bousseksou A. Appl. Phys. Lett. 2016, 109, 061903. |
| [71] | Pronschinske A.; Chen Y.; Lewis F.; Shultz D. A.; Calzolari A.; Nardelli M. B.; Dougherty D. B. Nano Lett. 2013, 13, 1429. |
| [72] | Pronschinske A.; Bruce R. C.; Lewis G.; Chen Y.; Calzolari A.; Buongiorno-nardelli D. M.; Shultz D. A. Chem. Commun. 2013, 49, 10446. |
| [73] | Zhang X.; Palamarciuc T.; Rosa P.; Doudin B.; Zhang Z. Z.; Wang J.; Dowben P. A. J. Phys. Chem. C 2012, 116, 23291. |
| [74] | Jiang X. Y.; Hao G. H.; Wang X.; Mosey A.; Zhang X.; Yu L.; Yost A. J.; DiChiara A. D.; N'Diaye A. T.; Cheng X. M.; Zhang J.; Cheng R. H.; Xu X. S.; Dowben P. A. J. Phys. Condens. Mat. 2019, 31, 315401. |
| [75] | Iasco O.; Boillot M. L.; Bellec A.; Guillot R. J. Mater. Chem. C 2017, 5, 11067. |
| [76] | Bairagi K.; Iasco O.; Bellec A.; Kartsev A.; Li D.; Girard Y.; Rousset S. Nat. Commun. 2016, 7, 12212. |
| [77] | Kaushik B.; Bellec A.; Fourmental C.; Iasco O.; Lagoute J.; Chacon C.; Girard Y.; Rousset S.; Choueikani F.; Otero E.; Ohresser P.; Sainctavit P.; Boillot M.; Mallah T.; Repain V. J. Phys. Chem. 2018, 122, 727. |
| [78] | Shalabaeva V.; Mikolasek M.; Manrique-juarez M. D.; Bas A.; Rat S.; Salmon L.; Nicolazzi W.; Bousseksou A. J. Phys. Chem. C 2017, 121, 25617. |
| [79] | Shalabaeva V.; Ridier K.; Rat S.; Manrique-Juarez M. D.; Salmon L.; Séguy I.; Rotaru A.; Molnár G.; Bousseksou A. Appl. Phys. Lett. 2018, 112, 013301. |
| [80] | Zhang Y. T.; Séguy I.; Ridier K.; Shalabaeva V.; Piedrahita-Bello M.; Rotaru A.; Salmon L.; Molnár G.; Bousseksou A. J. Phys. Condens. Mat. 2020, 32, 214010. |
| [81] | Manrique-Juarez M. D.;, Mathieu F.; Shalabaeva V.; Cacheux J.; Rat S.; Nicu L.; Leïchlé T.; Salmon L.; Molnár G.; Bousseksou A. Angew. Chem., Int. Ed. 2017, 56, 8074. |
| [82] | Bas A. C.; Thompson X.; Salmon L.; Thibault C.; Molnár G.; Palamarciuc O.; Routaboul L.; Bousseksou A. Magnetochemistry 2019, 5, 5020028. |
| [83] | Bernien M.; Wiedemann D.; Hermanns C. F.; Kru A.; Rolf D.; Kroener W.; Mu P.; Grohmann A.; Kuch W. J. Phys. Chem. Lett. 2012, 3, 3431. |
| [84] | Kumar K. S.; Studniarek M.; Heinrich B.; Arabski J.; Schmerber G.; Bowen M.; Boukari S.; Beaurepaire E.; Dreiser J.; Ruben M. Adv. Mater. 2018, 11, 1705416. |
| [85] | Qiu Y. R.; Ge J. Y.; Li J. Q.; Su J.; Zuo J. L. Sci. Sin. Chim. 2020, 50, 1737.(in Chinese) |
| [85] | (仇亚茹, 葛景园, 李佳茜, 苏剑, 左景林, 中国科学: 化学, 2020, 50, 1737.) |
| [86] | Ge J. Y.; Chen Z. Y.; Zhang L.; Liang X.; Su J.; Kurmoo M.; Zuo J. L. Angew. Chem., Int. Ed. 2019, 58, 8789. |
| [87] | Gakiya-Teruya M.; Jiang X. Y.; Le D.; U?ngör, O?.; Durrani, A.; Koptur-Palenchar, J.; Jiang, J.; Jiang, T.; Meisel, M.; Cheng, H. P.; Zhang, X. G.; Zhang, X. X.; Rahman, T. S.; Hebard, A.; Shatruk, M. J. Am. Chem. Soc. 2021, 143, 14563. |
| [88] | Le D.; Jiang T.; Gakiya-Teruya M.; Shatruk M.; Rahman T. S. J. Phys. Condes. Mat. 2021, 33, 385201. |
| [89] | Zhang X.; Costa P. S.; Hooper J.; Miller D. P.; N'Diaye A. T.; Beniwal S.; Jiang X.; Yin Y.; Rosa P.; Routaboul L.; Gonidec M.; Poggini L.; Braustein P.; Doudin B.; Xu X.; Enders A.; Zurek E.; Dowben P. A. Adv. Mater. 2017, 29, 1702257. |
| [90] | Shi S. W.; Sun Z. Y.; Liu X. J.; Bedoya-Pinto A.; Graziosi P.; Yu H. Z.; Li W. T.; Liu G.; Hueso L.; Dediu V. A.; Fahlman M. Adv. Electron. Mater. 2018, 4, 1800077. |
| [91] | Shi S. W.; Sun Z. Y.; Bedoya-Pinto A.; Graziosi P.; Li X. T.; Liu X. J.; Hueso L.; Dediu V. A.; Luo Y.; Fahlman M. Adv. Funct. Mater. 2014, 24, 4812. |
| [92] | Lach S.; Altenhof A.; Shi S. W.; Fahlman M.; Ziegler C. Phys. Chem. Chem. Phys. 2019, 21, 15833. |
| [93] | Barraud C.; Bouzehouane K.; Deranlot C.; Kim D. J.; Rakshit R.; Shi S. W.; Arabski J.; Bowen M.; Beaurepaire E.; Boukari S.; Petroff F.; Seneor P.; Mattana R. Dalton. Trans. 2016, 45, 16694. |
| [94] | Torres-Cavanillas R.; Morant-Giner M.; Escorcia-Ariza G.; Dugay, J.; Canet-Ferrer, J.; Tatay, S.; Cardona-Serra, S.; Giménez-Marqués, M.; Galbiati, M.; Forment-Aliaga, A.; Coronado, E. Nat. Mater. 2021, 13, 1101. |
/
| 〈 |
|
〉 |