化学学报 ›› 2022, Vol. 80 ›› Issue (9): 1351-1363.DOI: 10.6023/A22050212 上一篇    下一篇

综述

可蒸镀自旋交叉配合物的薄膜与器件

张琪a, 江梦云a, 刘天一a, 曾意迅a, 石胜伟a,b,*()   

  1. a 武汉工程大学材料科学与工程学院 武汉 430205
    b 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
  • 投稿日期:2022-05-06 发布日期:2022-07-01
  • 通讯作者: 石胜伟
  • 作者简介:

    张琪, 男, 武汉工程大学材料学院在读硕士研究生, 主要研究方向为基于自旋交叉配合物的开关存储器件.

    江梦云, 女, 武汉工程大学材料学院在读硕士研究生, 主要研究方向为室温以上自旋交叉配合物的分子设计与制备.

    石胜伟, 男, 博士毕业于中国科学院长春应用化学研究所, 现为武汉工程大学特聘教授, 主要研究方向为有机半导体材料与器件、柔性电子、自旋交叉现象及其器件应用等.

  • 基金资助:
    国家自然科学基金(52173183); 湖北省自然科学基金(2021CFB598); 中国科学院高分子物理与化学国家重点实验室开放课题(2020-13)

Thin Films and Devices of Evaporable Spin Crossover Complexes

Qi Zhanga, Mengyun Jianga, Tianyi Liua, Yixun Zenga, Shengwei Shia,b()   

  1. a School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205
    b State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
  • Received:2022-05-06 Published:2022-07-01
  • Contact: Shengwei Shi
  • Supported by:
    National Natural Science Foundation of China(52173183); Natural Science Foundation of Hubei Province(2021CFB598); Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Chinese Academy of Sciences(2020-13)

自旋交叉配合物在温度、压力、光照和磁场等刺激下可以发生高低自旋态之间的可逆转变, 通常还伴随着颜色、体积和电导率变化以及热滞等效应, 因此这类材料在光热开关、传感器、显示和存储等领域具有潜在的应用. 由于可以获得高质量的超洁净薄膜, 高真空蒸镀工艺常用于分子电子学与分子磁学等的器件制备, 目前报道的可蒸镀自旋交叉配合物种类较少, 大大限制了自旋交叉配合物的器件应用. 针对可蒸镀自旋交叉配合物的薄膜与器件进行了系统的综述, 介绍了几种主要的适于高真空蒸镀的自旋交叉配合物, 结合不同的表征手段分析了衬底对分子薄膜自旋转变特性的影响, 并针对相关的概念性器件进行了讨论, 最后对自旋交叉配合物在器件应用中存在的难点和未来的发展趋势进行了展望和评述, 希望能够为自旋交叉领域的器件应用提供一些借鉴.

关键词: 自旋交叉配合物, 自旋转变, 蒸镀, 薄膜, 器件应用

Spin states of the spin crossover complexes can be switched reversibly between high spin and low spin under different stimulations such as temperature, pressure, irradiation and magnetic field. Generally, it is also accompanied by the change of color, volume and conductivity, and the thermo-induced magnetic hysteresis. Therefore, they show potential applications in optical/thermal switches, sensors, display, and memory devices. Additionally, high-vacuum evaporation is generally applied to fabricate devices in molecular electronics/spintronics with high-quality and ultra-clean films. However, there are very few evaporable spin crossover complexes which greatly limit their applications. In this paper, we systematically summarize the recent progress of evaporable spin crossover complexes in films and devices. Several reported evaporable spin crossover complexes are discussed, and the effect of the substrate on spin transition has been investigated with different techniques, furthermore, the related conceptual devices are discussed. At the end, the existed difficulties and future trends of spin crossover complexes in device applications are prospected and reviewed to provide useful guidance for the future device developments.

Key words: spin crossover complexes, spin transition, evaporation, thin film, device applications