二维共价有机框架材料的可控合成及其光催化应用研究进展
Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks
Received date: 2022-07-12
Online published: 2022-08-31
通过模拟自然界光合作用, 将太阳能转化为方便存储的化学能是缓解未来能源短缺和环境污染问题的理想途径之一. 二维共价有机框架材料(2D COFs)是近年来发展起来的一类新型有机半导体材料, 具有结晶度高、结构精确以及化学组分灵活可调等优势, 在光催化领域展现出巨大应用潜力, 受到了研究者们的广泛关注. 对2D COFs的可控制备以及电子结构调控方法进行了系统总结, 并重点介绍了它们在光催化水分解、CO2还原以及H2O2合成领域的最近研究进展, 讨论了材料结构和催化性能之间的关系, 最后对2D COFs在光催化应用领域存在的机遇和挑战进行了展望.
于潇涵 , 黄伟 , 李彦光 . 二维共价有机框架材料的可控合成及其光催化应用研究进展[J]. 化学学报, 2022 , 80(11) : 1494 -1506 . DOI: 10.6023/A22070303
In the past century, the extensive consumption of fossil fuels has caused significant environmental pollution and energy resource crisis. As a result, seeking to develop clean and renewable alternatives to traditional fossil fuels has recently aroused great concern. Clean and abundant solar energy is undoubtedly an ideal solution. Inspired by natural photosynthesis, tremendous efforts have been devoted over past decades to build artificial photocatalytic systems that aims to convert solar energy to valuable chemical energy, such as H2, CO, CH4 and H2O2 etc. To do this, developing advanced semiconductor photocatalysts with superior optoelectronic properties is of fundamental importance and has become one of the main challenges. Two-dimensional covalent organic frameworks (2D COFs), as a new class of crystalline, organic porous materials, have recently attracted increasing attention for photocatalytic applications. Specially, they feature periodic molecular architectures and π-unit arrays that are assembled from organic subunits via covalent bonds and π-π interaction. Benefiting from these unique structural characters, 2D COFs usually possess broad visible light absorption range and much enhanced charge separation efficiency in comparison with their amorphous counterparts. Moreover, their molecular topology structures and optoelectronic properties can be readily tuned by selecting suitable monomers and synthetic procedures, making them to be a versatile platform for task-oriented synthesis of advanced photocatalysts with predesigned structures and functionalities. Therefore, the development of 2D COFs photocatalysts will undoubtedly provide new opportunities for efficient utilization of solar energy. In this paper, we first overviewed the synthetic methods of 2D COFs and the viable strategies for modulating their optoelectronic properties, and subsequently summarized current research advances of 2D COFs on photocatalytic water splitting, CO2 reduction and H2O2 production. Finally, the opportunities and challenges in this emerging field are prospected.
[1] | Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renew. Sust. Energ. Rev. 2014, 39, 748. |
[2] | Nejat, P.; Jomehzadeh, F.; Taheri, M. M.; Gohari, M.; Abd. Majid, M. Z. Renew. Sust. Energ. Rev. 2015, 43, 843. |
[3] | Friedlingstein, P.; Andrew, R. M.; Rogelj, J.; Peters, G. P.; Canadell, J. G.; Knutti, R.; Luderer, G.; Raupach, M. R.; Schaeffer, M.; Van Vuuren, D. P.; Le Quere, C. Nat. Geosci. 2014, 7, 709. |
[4] | Artz, J.; Mueller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev. 2018, 118, 434. |
[5] | Kannan, N.; Vakeesan, D. Renew. Sust. Energ. Rev. 2016, 62, 1092. |
[6] | Lewis, N. S. Science 2016, 351, 353. |
[7] | Chu, S.; Majumdar, A. Nature 2012, 488, 294. |
[8] | Huang, W.; Luo, W.; Li, Y. G. Mater. Today 2020, 40, 160. |
[9] | Zhu, S. S.; Wang, D. W. Adv. Energy Mater. 2017, 7, 1700841. |
[10] | Fujishima, A.; Honda, K. Nature 1972, 238, 37. |
[11] | Zhang, P.; Zhang, J.; Gong, J. Chem. Soc. Rev. 2014, 43, 4395. |
[12] | Halmann, M. Nature 1978, 275, 115. |
[13] | Chandrasekaran, S.; Yao, L.; Deng, L.; Bowen, C.; Zhang, Y.; Chen, S.; Lin, Z.; Peng, F.; Zhang, P. Chem. Soc. Rev. 2019, 48, 4178. |
[14] | Weng, B.; Qi, M.-Y.; Han, C.; Tang, Z.-R.; Xu, Y.-J. ACS Catal. 2019, 9, 4642. |
[15] | Okamoto, Y.; Ida, S.; Hyodo, J.; Hagiwara, H.; Ishihara, T. J. Am. Chem. Soc. 2011, 133, 18034. |
[16] | Ji, Y. F.; Luo, Y. J. Am. Chem. Soc. 2016, 138, 15896. |
[17] | Cai, J. M.; Zhu, Y. M.; Liu, D. S.; Meng, M.; Hu, Z. P.; Jiang, Z. ACS Catal. 2015, 5, 1708. |
[18] | Yang, D. H.; Tao, Y.; Ding, X.; Han, B. H. Chem. Soc. Rev. 2022, 51, 761. |
[19] | Tan, L. X.; Tan, B. Acta Chim. Sinica 2015, 73, 530. (in Chinese) |
[19] | (谭良骁, 谭必恩, 化学学报, 2015, 73, 530.) |
[20] | Du, J.; Ouyang, H.; Tan, B. Chem-Asian J. 2021, 16, 3833. |
[21] | Wang, L.; Wan, Y. Y.; Ding, Y. J.; Wu, S.; Zhang, Y.; Zhang, X. L.; Zhang, G. Q.; Xiong, Y. J.; Wu, X. J.; Yang, J. L.; Xu, H. X. Adv. Mater. 2017, 29. |
[22] | Wang, S. L.; Xu, M.; Peng, T. Y.; Zhang, C. X.; Li, T.; Hussain, I.; Wang, J. Y.; Tan, B. E. Nat. Commun. 2019, 10, 676. |
[23] | Huang, N.; Wang, P.; Jiang, D. L. Nat. Rev. Mater. 2016, 1, 16068. |
[24] | Diercks, C. S.; Yaghi, O. M. Science 2017, 355, 923. |
[25] | Kandambeth, S.; Dey, K.; Banerjee, R. J. Am. Chem. Soc. 2019, 141, 1807. |
[26] | Yu, G.; Wang, C. Chin. J. Org. Chem. 2020, 40, 1437. (in Chinese) |
[26] | (于歌, 汪成, 有机化学, 2020, 40, 1437.) |
[27] | Guan, X. Y.; Chen, F. Q.; Fang, Q. R.; Qiu, S. L. Chem. Soc. Rev. 2020, 49, 1357. |
[28] | Meng, Y.; Luo, Y.; Shi, J.-L.; Ding, H. M.; Lang, X. J.; Chen, W.; Zheng, A. M.; Sun, J. L.; Wang, C. Angew. Chem., Int. Ed. 2020, 59, 3624. |
[29] | Ghosh, S.; Tsutsui, Y.; Kawaguchi, T.; Matsuda, W.; Nagano, S.; Suzuki, K.; Kaji, H.; Seki, S. Chem. Mater. 2022, 34, 736. |
[30] | Wan, S.; Gandara, F.; Asano, A.; Furukawa, H.; Saeki, A.; Dey, S. K.; Liao, L.; Ambrogio, M. W.; Botros, Y. Y.; Duan, X.; Seki, S.; Stoddart, J. F.; Yaghi, O. M. Chem. Mater. 2011, 23, 4094. |
[31] | Wang, C. Y.; Zhang, Z. C.; Zhu, Y. T.; Yang, C. H.; Wu, J. S.; Hu, W. P. Adv. Mater. 2022, 34, 2102290. |
[32] | Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548. |
[33] | Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Chem. Rev. 2020, 120, 8814. |
[34] | Li, Y.; Chen, W. B.; Xing, G. L.; Jiang, D. L.; Chen, L. Chem. Soc. Rev. 2020, 49, 2852. |
[35] | Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166. |
[36] | Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. J. Am. Chem. Soc. 2011, 133, 11478. |
[37] | Wang, M. C.; Ballabio, M.; Wang, M.; Lin, H.-H.; Biswal, B. P.; Han, X. C.; Paasch, S.; Brunner, E.; Liu, P.; Chen, M. W.; Bonn, M.; Heine, T.; Zhou, S. Q.; Canovas, E.; Dong, R. H.; Feng, X. L. J. Am. Chem. Soc. 2019, 141, 16810. |
[38] | Li, Z. P.; Feng, X.; Zou, Y. C.; Zhang, Y. W.; Xia, H.; Liu, X. M.; Mu, Y. ChemComm 2014, 50, 13825. |
[39] | Halder, A.; Karak, S.; Addicoat, M.; Bera, S.; Chakraborty, A.; Kunjattu, S. H.; Pachfule, P.; Heine, T.; Banerjee, R. Angew. Chem., Int. Ed. 2018, 57, 5797. |
[40] | Segura, J. L.; Mancheno, M. J.; Zamora, F. Chem. Soc. Rev. 2016, 45, 5635. |
[41] | Wang, Z. T.; Li, H.; Yan, S. C.; Fang, Q. R. Acta Chim. Sinica 2020, 78, 63. (in Chinese) |
[41] | (王志涛, 李辉, 颜士臣, 方千荣, 化学学报, 2020, 78, 63.) |
[42] | Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y. Nat. Commun. 2014, 5, 4503. |
[43] | Maschita, J.; Banerjee, T.; Savasci, G.; Haase, F.; Ochsenfeld, C.; Lotsch, B. V. Angew. Chem., Int. Ed. 2020, 59, 15750. |
[44] | Wang, K.; Jia, Z.; Bai, Y.; Wang, X.; Hodgkiss, S. E.; Chen, L.; Chong, S. Y.; Wang, X.; Yang, H.; Xu, Y.; Feng, F.; Ward, J. W.; Cooper, A. I. J. Am. Chem. Soc. 2020, 142, 11131. |
[45] | Ren, S. J.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Adv. Mater. 2012, 24, 2357. |
[46] | Wang, K.; Yang, L.-M.; Wang, X.; Guo, L.; Cheng, G.; Zhang, C.; Jin, S.; Tan, B.; Cooper, A. Angew. Chem., Int. Ed. 2017, 56, 14149. |
[47] | Huang, N.; Lee, K. H.; Yue, Y.; Xu, X. Y.; Irle, S.; Jiang, Q. H.; Jiang, D. L. Angew. Chem., Int. Ed. 2020, 59, 16587. |
[48] | Wang, P.-L.; Ding, S.-Y.; Zhang, Z.-C.; Wang, Z.-P.; Wang, W. J. Am. Chem. Soc. 2019, 141, 18004. |
[49] | Yang, S. Z.; Yang, C. Q.; Dun, C. C.; Mao, H. Y.; Khoo, R. S. H.; Klivansky, L. M.; Reimer, J. A.; Urban, J. J.; Zhang, J.; Liu, Y. J. Am. Chem. Soc. 2022, 144, 9827. |
[50] | Hu, Y. P.; Huang, W.; Wang, H. S.; He, Q.; Zhou, Y.; Yang, P.; Li, Y. Y.; Li, Y. G. Angew. Chem., Int. Ed. 2020, 59, 14378. |
[51] | Huang, W.; He, Q.; Pan, H. Y.; Li, Y. G. Angew. Chem., Int. Ed. 2019, 58, 8676. |
[52] | Qian, Z. F.; Wang, Z. J.; Zhang, K. A. I. Chem. Mater. 2021, 33, 1909. |
[53] | Zhang, S. Q.; Cheng, G.; Guo, L. P.; Wang, N.; Tan, B. E.; Jin, S. B. Angew. Chem., Int. Ed. 2020, 59, 6007. |
[54] | Zhuang, X. D.; Zhao, W. X.; Zhang, F.; Cao, Y.; Liu, F.; Bia, S.; Feng, X. L. Polym. Chem. 2016, 7, 4176. |
[55] | Jin, E. Q.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q. H.; Jiang, D. L. Science 2017, 357, 673. |
[56] | Zhou, B. L.; Chen, L. Acta Chim. Sinica 2015, 73, 487. (in Chinese) |
[56] | (周宝龙, 陈龙, 化学学报, 2015, 73, 487.) |
[57] | Han, X.-H.; Qi, Q.-Y.; Zhou, Z.-B.; Zhao, X. Chin. J. Chem. 2020, 38, 1676. |
[58] | Zhang, F.-M.; Sheng, J.-L.; Yang, Z.-D.; Sun, X.-J.; Tang, H.-L.; Lu, M.; Dong, H.; Shen, F.-C.; Liu, J.; Lan, Y.-Q. Angew. Chem., Int. Ed. 2018, 57, 12106. |
[59] | Liu, X. Z.; Guan, X. Y.; Fang, Q. R.; Jin, Y. R. Chem. J. Chin. Univ. 2019, 40, 1341. |
[60] | Lan, Z.-A.; Wu, M.; Fang, Z. P.; Zhang, Y. F.; Chen, X.; Zhang, G. G.; Wang, X. C. Angew. Chem., Int. Ed. 2022, 61, e202201482. |
[61] | Campbell, N. L.; Clowes, R.; Ritchie, L. K.; Cooper, A. I. Chem. Mater. 2009, 21, 204. |
[62] | Sun, T.; Liang, Y.; Xu, Y. Angew. Chem., Int. Ed. 2022, 61, e202113926. |
[63] | James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C. Chem. Soc. Rev. 2012, 41, 413. |
[64] | Do, J.-L.; Friscic, T. ACS Cent. Sci. 2017, 3, 13. |
[65] | Friscic, T.; Mottillo, C.; Titi, H. M. Angew. Chem., Int. Ed. 2020, 59, 1018. |
[66] | Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjeet, R. J. Am. Chem. Soc. 2013, 135, 5328. |
[67] | Das, G.; Shinde, D. B.; Kandambeth, S.; Biswal, B. P.; Banerjee, R. ChemComm 2014, 50, 12615. |
[68] | Dey, K.; Pal, M.; Rout, K. C.; Kunjattu, S. H.; Das, A.; Mukherjee, R.; Kharul, U. K.; Banerjee, R. J. Am. Chem. Soc. 2017, 139, 13083. |
[69] | Feldblyum, J. I.; Mccreery, C. H.; Andrews, S. C.; Kurosawa, T.; Santos, E. J. G.; Duong, V.; Fang, L.; Ayzner, A. L.; Bao, Z. ChemComm 2015, 51, 13894. |
[70] | Muntwiler, M.; Yang, Q.; Tisdale, W. A.; Zhu, X. Y. Phys. Rev. Lett. 2008, 101, 196403. |
[71] | Zhu, X. Y.; Yang, Q.; Muntwiler, M. Acc. Chem. Res. 2009, 42, 1779. |
[72] | Deschler, F.; Da Como, E.; Limmer, T.; Tautz, R.; Godde, T.; Bayer, M.; Von Hauff, E.; Yilmaz, S.; Allard, S.; Scherf, U.; Feldmann, J. Phys. Rev. Lett. 2011, 107, 127402. |
[73] | Lan, Z.-A.; Zhang, G. G.; Chen, X.; Zhang, Y. F.; Zhang, K. a. I.; Wang, X. C. Angew. Chem., Int. Ed. 2019, 58, 10236. |
[74] | Jin, E. Q.; Lan, Z. A.; Jiang, Q. H.; Geng, K. Y.; Li, G. S.; Wang, X. C.; Jiang, D. L. Chem 2019, 5, 1632. |
[75] | Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. a. J.; Meijer, E. W.; Herwig, P.; De Leeuw, D. M. Nature 1999, 401, 685. |
[76] | Haase, F.; Lotsch, B. V. Chem. Soc. Rev. 2020, 49, 8469. |
[77] | Jin, X.-H.; Price, M. B.; Finnegan, J. R.; Boott, C. E.; Richter, J. M.; Rao, A.; Menke, M.; Friend, R. H.; Whittell, G. R.; Manners, I. Science 2018, 360, 897. |
[78] | Yang, J.; Kang, F. Y.; Wang, X.; Zhang, Q. C. Mater. Horizons 2022, 9, 121. |
[79] | Zhang, W.; Chen, L.; Dai, S.; Zhao, C.; Ma, C.; Wei, L.; Zhu, M.; Chong, S. Y.; Yang, H.; Liu, L.; Bai, Y.; Yu, M.; Xu, Y.; Zhu, X.-W.; Zhu, Q.; An, S.; Sprick, R. S.; Little, M. A.; Wu, X.; Jiang, S.; Wu, Y. Z.; Zhang, Y.-B.; Tian, H.; Zhu, W.-H.; Cooper, A. I. Nature 2022, 604, 72. |
[80] | Wang, Y. J.; Wang, Q. S.; Zhan, X. Y.; Wang, F. M.; Safdar, M.; He, J. Nanoscale 2013, 5, 8326. |
[81] | Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Chem. Soc. Rev. 2014, 43, 5234. |
[82] | Wang, L.; Zheng, X. S.; Chen, L.; Xiong, Y. J.; Xu, H. X. Angew. Chem., Int. Ed. 2018, 57, 3454. |
[83] | Chen, X. Y.; Geng, K. E.; Liu, R. Y.; Tan, K. T.; Gong, Y. F.; Li, Z. P.; Tao, S. S.; Jiang, Q. H.; Jiang, D. L. Angew. Chem., Int. Ed. 2020, 59, 5050. |
[84] | Turner, J. A. Science 2004, 305, 972. |
[85] | Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48, 2109. |
[86] | Wang, Y.; Vogel, A.; Sachs, M.; Sprick, R. S.; Wilbraham, L.; Moniz, S. J. A.; Godin, R.; Zwijnenburg, M. A.; Durrant, J. R.; Cooper, A. I.; Tang, J. Nat. Energy 2019, 4, 746. |
[87] | Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2014, 43, 7787. |
[88] | Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. Chem. Sci. 2014, 5, 2789. |
[89] | Banerjee, T.; Gottschling, K.; Savasci, G.; Ochsenfeld, C.; Lotsch, B. V. ACS Energy Lett. 2018, 3, 400. |
[90] | Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W.-H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Nat. Chem. 2018, 10, 1180. |
[91] | Li, C. Z.; Liu, J.; Li, H.; Wu, K. F.; Wang, J. H.; Yang, Q. H. Nat. Commun. 2022, 13, 2357. |
[92] | Li, Y. M.; Yang, L.; He, H. J.; Sun, L.; Wang, H. L.; Fang, X.; Zhao, Y. L.; Zheng, D. Y.; Qi, Y.; Li, Z.; Deng, W. Q. Nat. Commun. 2022, 13, 1355. |
[93] | Wang, Y. O.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D. J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. W. Chem. Rev. 2018, 118, 5201. |
[94] | Kong, D.; Zheng, Y.; Kobielusz, M.; Wang, Y.; Bai, Z. M.; Macyk, W.; Wang, X. C.; Tang, J. W. Mater. Today 2018, 21, 897. |
[95] | Wan, Y. Y.; Wang, L.; Xu, H. X.; Wu, X. J.; Yang, J. L. J. Am. Chem. Soc. 2020, 142, 4508. |
[96] | Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Mater. Today 2018, 21, 1042. |
[97] | Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z.-X.; Tang, J. Energy Environ. Sci. 2015, 8, 731. |
[98] | Wu, J. H.; Huang, Y.; Ye, W.; Li, Y. U. Adv. Sci. 2017, 4, 1700194. |
[99] | Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Chem. Rev. 2019, 119, 3962. |
[100] | Nguyen, H. L.; Alzamly, A. ACS Catal. 2021, 11, 9809. |
[101] | Barman, S.; Singh, A.; Rahimi, F. A.; Maji, T. K. J. Am. Chem. Soc. 2021, 143, 16284. |
[102] | Lei, K.; Wang, D.; Ye, L. Q.; Kou, M. P.; Deng, Y.; Ma, Z. Y.; Wang, L.; Kong, Y. ChemSusChem 2020, 13, 1725. |
[103] | Fu, Y. H.; Zhu, X. L.; Huang, L.; Zhang, X. C.; Zhang, F. M.; Zhu, W. D. Appl. Catal. B Environ. 2018, 239, 46. |
[104] | Yang, S. Z.; Hu, W. H.; Zhang, X.; He, P.; Pattengale, B.; Liu, C.; Cendejas, M.; Hermans, I.; Zhang, X. Y.; Zhang, J.; Huang, J. E. J. Am. Chem. Soc. 2018, 140, 14614. |
[105] | Lu, M.; Liu, J.; Li, Q.; Zhang, M.; Liu, M.; Wang, J.-L.; Yuan, D.-Q.; Lan, Y.-Q. Angew. Chem., Int. Ed. 2019, 58, 12392. |
[106] | Lu, M.; Zhang, M.; Liu, J.; Yu, T.-Y.; Chang, J.-N.; Shang, L.-J.; Li, S.-L.; Lan, Y.-Q. J. Am. Chem. Soc. 2022, 144, 1861. |
[107] | Dong, J. Q.; Han, X.; Liu, Y.; Li, H. Y.; Cui, Y. Angew. Chem., Int. Ed. 2020, 59, 13722. |
[108] | Fu, Z.; Wang, X.; Gardner, A.; Wang, X.; Chong, S. Y.; Neri, G.; Cowan, A. J.; Liu, L.; Li, X.; Vogel, A.; Clowes, R.; Bilton, M.; Chen, L.; Sprick, R. S.; Cooper, A. I. Chem. Sci. 2020, 11, 543. |
[109] | Li, S.-Y.; Meng, S.; Zou, X.; El-Roz, M.; Telegeev, I.; Thili, O.; Liu, T. X.; Zhu, G. Micropor. Mesopor. Mater. 2019, 285, 195. |
[110] | Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. J. Am. Chem. Soc. 2019, 141, 7615. |
[111] | Lu, M.; Li, Q.; Liu, J.; Zhang, F.-M.; Zhang, L.; Wang, J.-L.; Kang, Z.-H.; Lan, Y.-Q. Appl. Catal. B Environ. 2019, 254, 624. |
[112] | Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. ChemSusChem 2016, 9, 3374. |
[113] | Hou, H. L.; Zeng, X. K.; Zhang, X. W. Angew. Chem., Int. Ed. 2020, 59, 17356. |
[114] | Cheng, H.; Cheng, J.; Wang, L.; Xu, H. X. Chem. Mater. 2022, 34, 4259. |
[115] | Haider, Z.; Cho, H.-I.; Moon, G.-H.; Kim, H.-I. Catal. Today 2019, 335, 55. |
[116] | Torres-Pinto, A.; Sampaio, M. J.; Silva, C. G.; Faria, J. L.; Silva, A. M. T. Catalysts 2019, 9, 990. |
[117] | Shiraishi, Y.; Takii, T.; Hagi, T.; Mori, S.; Kofuji, Y.; Kitagawa, Y.; Tanaka, S.; Ichikawa, S.; Hirai, T. Nat. Mater. 2019, 18, 985. |
[118] | Liu, L.; Gao, M.-Y.; Yang, H.; Wang, X.; Li, X.; Cooper, A. I. J. Am. Chem. Soc. 2021, 143, 19287. |
[119] | Krishnaraj, C.; Jena, H. S.; Bourda, L.; Laemont, A.; Pachfule, P.; Roeser, J.; Chandran, C. V.; Borgmans, S.; Rogge, S. M. J.; Leus, K.; Stevens, C. V.; Martens, J. A.; Van Speybroeck, V.; Breynaert, E.; Thomas, A.; Van Der Voort, P. J. Am. Chem. Soc. 2020, 142, 20107. |
[120] | Wang, H. Z.; Yang, C.; Chen, F. S.; Zheng, G. F.; Han, Q. Angew. Chem., Int. Ed. 2022, 61, e202202328. |
[121] | Cheng, H.; Lv, H. F.; Cheng, J.; Wang, L.; Wu, X. J.; Xu, H. X. Adv. Mater. 2022, 34, 2107480. |
[122] | Kou, M. P.; Wang, Y. Y.; Xu, Y. X.; Ye, L. Q.; Huang, Y. P.; Jia, B. H.; Li, H.; Ren, J. Q.; Deng, Y.; Chen, J. H.; Zhou, Y.; Lei, K.; Wang, L.; Liu, W.; Huang, H. W.; Ma, T. Y. Angew. Chem., Int. Ed. 2022, 61, e202200413. |
[123] | Zhao, W.; Yan, P. Y.; Li, B.; Bahri, M.; Liu, L. J.; Zhou, X.; Clowes, R.; Browning, N. D.; Wu, Y.; Ward, J. W.; Cooper, A. I. J. Am. Chem. Soc. 2022, 144, 9902. |
[124] | Hou, Y.; Cui, C.-X.; Zhang, E.; Wang, J.-C.; Li, Y.; Zhang, Y.; Zhang, Y.; Wang, Q.; Jiang, J. Dalton Trans. 2019, 48, 14989. |
[125] | Guo, D.; Ming, F. W.; Shinde, D. B.; Cao, L.; Huang, G.; Li, C. Y.; Li, Z.; Yuan, Y. Y.; Hedhili, M. N.; Alshareef, H. N.; Lai, Z. P. Adv. Funct. Mater. 2021, 31, 2101194. |
[126] | Wang, W.; Liu, C.; Zhang, M. T.; Zhang, C. Y.; Cao, L.; Zhang, C. F.; Liu, T. F.; Kong, D. B.; Li, W.; Chen, S. G. J. Colloid Interface Sci. 2022, 608, 735. |
[127] | Qi, M.-Y.; Conte, M.; Anpo, M.; Tang, Z.-R.; Xu, Y.-J. Chem. Rev. 2021, 121, 13051. |
[128] | Yuan, L.; Qi, M.-Y.; Tang, Z.-R.; Xu, Y.-J. Angew. Chem., Int. Ed. 2021, 60, 21150. |
[129] | Nesbitt, N. T.; Burdyny, T.; Simonson, H.; Salvatore, D.; Bohra, D.; Kas, R.; Smith, W. A. ACS Catal. 2020, 10, 14093. |
[130] | Xiong, X. Y.; Wang, Z. P.; Zhang, Y.; Li, Z. H.; Shi, R.; Zhang, T. R. Appl. Catal. B Environ. 2020, 264, 118518. |
/
〈 |
|
〉 |