化学学报 ›› 2022, Vol. 80 ›› Issue (11): 1494-1506.DOI: 10.6023/A22070303 上一篇    下一篇

综述

二维共价有机框架材料的可控合成及其光催化应用研究进展

于潇涵, 黄伟*(), 李彦光*()   

  1. 苏州大学功能纳米与软物质研究院 江苏苏州 215123
  • 投稿日期:2022-07-12 发布日期:2022-08-30
  • 通讯作者: 黄伟, 李彦光
  • 作者简介:

    于潇涵, 苏州大学功能纳米与软物质研究院硕士研究生. 2020年本科毕业于苏州大学纳米科学技术学院, 现主要从事有机聚合物半导体材料的合成及其光催化应用研究.

    黄伟, 副教授, 硕士生导师, 苏州大学优秀青年学者. 2017年于德国马普高分子研究所获化学博士学位, 2018年至2021年于苏州大学从事博士后研究, 2021年入职苏州大学功能纳米与软物质研究院, 担任副教授. 近年来主要从事多孔有机聚合物材料的可控合成及光催化应用研究. 在材料的分子设计、可控合成、光驱动太阳能燃料制备和有机质转化方面取得了一系列创新成果. 在Angew. Chem., Mater. Today, ACS Catal.等材料、化学领域权威期刊发表学术论文30余篇, 其中2篇论文入选ESI高被引论文, 多篇论文被Angew. Chem.选为热点和封面文章. 获国家自然科学基金青年基金和中国博士后面上项目资助.

    李彦光教授于2005年获得复旦大学化学系理学学士学位, 2010年获得美国俄亥俄州立大学化学系化学博士学位, 2010年至2013年在美国斯坦福大学化学系从事博士后研究, 2013年10月入职苏州大学功能纳米与软物质研究院, 被聘为教授、博士生导师. 到目前为止, 共发表学术论文150余篇, 论文总他引36000余次, ESI高被引论文40余篇, 在2017~2021年连续入选科睿唯安(Clarivate Analytics)“全球高被引学者”榜单(材料、化学).

Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks

Xiaohan Yu, Wei Huang(), Yanguang Li()   

  1. Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123
  • Received:2022-07-12 Published:2022-08-30
  • Contact: Wei Huang, Yanguang Li

通过模拟自然界光合作用, 将太阳能转化为方便存储的化学能是缓解未来能源短缺和环境污染问题的理想途径之一. 二维共价有机框架材料(2D COFs)是近年来发展起来的一类新型有机半导体材料, 具有结晶度高、结构精确以及化学组分灵活可调等优势, 在光催化领域展现出巨大应用潜力, 受到了研究者们的广泛关注. 对2D COFs的可控制备以及电子结构调控方法进行了系统总结, 并重点介绍了它们在光催化水分解、CO2还原以及H2O2合成领域的最近研究进展, 讨论了材料结构和催化性能之间的关系, 最后对2D COFs在光催化应用领域存在的机遇和挑战进行了展望.

关键词: 共价有机框架材料, 光催化, 析氢, CO2还原, 氧还原

In the past century, the extensive consumption of fossil fuels has caused significant environmental pollution and energy resource crisis. As a result, seeking to develop clean and renewable alternatives to traditional fossil fuels has recently aroused great concern. Clean and abundant solar energy is undoubtedly an ideal solution. Inspired by natural photosynthesis, tremendous efforts have been devoted over past decades to build artificial photocatalytic systems that aims to convert solar energy to valuable chemical energy, such as H2, CO, CH4 and H2O2 etc. To do this, developing advanced semiconductor photocatalysts with superior optoelectronic properties is of fundamental importance and has become one of the main challenges. Two-dimensional covalent organic frameworks (2D COFs), as a new class of crystalline, organic porous materials, have recently attracted increasing attention for photocatalytic applications. Specially, they feature periodic molecular architectures and π-unit arrays that are assembled from organic subunits via covalent bonds and π-π interaction. Benefiting from these unique structural characters, 2D COFs usually possess broad visible light absorption range and much enhanced charge separation efficiency in comparison with their amorphous counterparts. Moreover, their molecular topology structures and optoelectronic properties can be readily tuned by selecting suitable monomers and synthetic procedures, making them to be a versatile platform for task-oriented synthesis of advanced photocatalysts with predesigned structures and functionalities. Therefore, the development of 2D COFs photocatalysts will undoubtedly provide new opportunities for efficient utilization of solar energy. In this paper, we first overviewed the synthetic methods of 2D COFs and the viable strategies for modulating their optoelectronic properties, and subsequently summarized current research advances of 2D COFs on photocatalytic water splitting, CO2 reduction and H2O2 production. Finally, the opportunities and challenges in this emerging field are prospected.

Key words: covalent organic frameworks, photocatalysis, H2 evolution, CO2 reduction, O2 reduction