有机电极材料在非水系金属镁二次电池中的研究进展
收稿日期: 2022-09-05
网络出版日期: 2022-10-27
基金资助
江苏省自然科学基金青年基金项目(BK20210518); 江苏省自然科学基金青年基金项目(BK20221113); 江苏省双创博士(JSSCBS20211233); 中央高校基本科研业务费(2021QN1106); 中央高校基本科研业务费(020514380266); 中央高校基本科研业务费(020514380272); 中央高校基本科研业务费(020514380274); 国家重点研发计划项目(2017YFA0208200); 国家自然科学基金项目(22022505); 国家自然科学基金项目(21872069); 江苏省碳达峰碳中和科技创新专项资金项目(BK20220008); 南京市国际联合研发项目(202201007); 南京市国际联合研发项目(2022SX00000955); 苏州市(吴江区)姑苏科技创新创业领军人才计划项目(ZXL2021273)
Recent Progress on Organic Electrode Materials for Nonaqueous Magnesium Secondary Batteries
Received date: 2022-09-05
Online published: 2022-10-27
Supported by
Natural Science Foundation of Jiangsu Province(BK20210518); Natural Science Foundation of Jiangsu Province(BK20221113); Shuangchuang Program of Jiangsu Province(JSSCBS20211233); Fundamental Research Funds for the Central Universities(2021QN1106); Fundamental Research Funds for the Central Universities(020514380266); Fundamental Research Funds for the Central Universities(020514380272); Fundamental Research Funds for the Central Universities(020514380274); National Key Research and Development Program of China(2017YFA0208200); National Natural Science Foundation of China(22022505); National Natural Science Foundation of China(21872069); Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province(BK20220008); Nanjing International Collaboration Research Program(202201007); Nanjing International Collaboration Research Program(2022SX00000955); Suzhou Gusu Leading Talent Program of Science and Technology Innovation and Entrepreneurship in Wujiang District(ZXL2021273)
由于镁资源储量丰富、成本低廉, 且金属镁具有理论体积比容量高(3833 mAh/cm3), 沉积/溶解过程中不易形成枝晶等优点, 金属镁二次电池受到了研究者的广泛关注. 然而, Mg2+较大的极性导致其在多数锂离子电池正极材料中无法实现可逆脱嵌. 主流无机电极材料普遍存在只能在较小电流密度下循环、动力学缓慢、制备工艺复杂等问题. 相较而言, 有机电极材料具有理论比容量高、结构多样易调控、资源丰富、环境友好、受离子半径和电荷影响小等优点, 被认为是一种有潜力的电极材料. 综述了近年来用于非水系镁二次电池有机正极材料的研究进展, 讨论了不同类型有机正极材料的电荷存储机制及电化学性能, 并总结了其面临的挑战、解决策略以及未来的发展方向.
薛晓兰 , 张洋 , 石美瑜 , 李天琳 , 黄天龙 , 戚继球 , 委福祥 , 隋艳伟 , 金钟 . 有机电极材料在非水系金属镁二次电池中的研究进展[J]. 化学学报, 2022 , 80(12) : 1618 -1628 . DOI: 10.6023/A22090385
Nonaqueous magnesium secondary batteries have attracted tremendous attention owing to their natural abundance, low cost, high theoretical volumetric specific capacities of 3833 mAh/cm3, and free of dendrite formation. However, the high polarity of Mg2+ ion results in the strong electrostatic interaction between Mg2+ ions and the anions of cathode materials, which makes it difficult to realize reversible insertion and de-insertion of Mg2+ ion in most cathode materials used in lithium ion batteries. At present, the research of cathode materials for magnesium secondary batteries is mainly focused on inorganic compounds. Unfortunately, such cathode materials suffer from problems of working at low current density, slow reaction kinetics, and complicated synthesis process. In comparison, organic electrode materials have been recognized as promising electrode materials for electrochemical energy storage systems because organic materials composed of naturally abundant chemical elements of C, H, O, N, S, etc., can be easily synthesized from renewable resources with low-cost at mild conditions. More importantly, organic materials with chemical diversity and structural flexibility can be purposefully synthesized. What’s more, the capacity, oxidation/reduction potentials, solubility, electron transfer rates, and mechanical properties can be regulated by introducing various groups or heteroatoms. Furthermore, compared to inorganic electrode materials with sluggish kinetics, organic electrode materials usually store ions through ion coordination mechanism, which is not limited by the type and size of ions and can be applied to different energy storage systems such as lithium ion batteries, sodium ion batteries, potassium ion batteries, multivalent-ion batteries, and supercapacitors. Herein, the recent progress of various organic- based materials for nonaqueous magnesium secondary batteries is summarized and the general redox mechanism is presented. Finally, the problems and challenges, resolution strategies and future development directions of organic electrode materials are briefly summarized and discussed.
[1] | Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. |
[2] | Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci. 2011, 4, 3243. |
[3] | Melot, B. C.; Tarascon, J. M. Acc. Chem. Res. 2013, 46, 1226. |
[4] | Lei, X.; Liang, X.; Yang, R.; Zhang, F.; Wang, C.; Lee, C. S.; Tang, Y. Small 2022, 18, 2200418. |
[5] | Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Energy Environ. Sci. 2013, 6, 2265. |
[6] | Gregory, T. D.; Hoffman, R. J.; Winterton, R. C. J. Electrochem. Soc. 1990, 137, 775. |
[7] | Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, M.; Moshkovich, M.; Levi, E. Nature 2000, 407, 724. |
[8] | Zhang, R.; Yu, X.; Nam, K. W.; Ling, C.; Arthur, T. S.; Song, W.; Knapp, A. M.; Ehrlich, S. N.; Yang, X.; Matsui, M. Electrochem. Commun. 2012, 23, 110. |
[9] | Cheng, Y.; Shao, Y.; Raju, V.; Ji, X.; Mehdi, B. L.; Han, K. S.; Engelhard, M. H.; Li, G.; Browning, N. D.; Mueller, K. T.; Liu, J. Adv. Funct. Mater. 2016, 26, 3446. |
[10] | Wang, L.; Asheim, K.; Vullum, P. E.; Svensson, A. M.; Vullum- Bruer, F. Chem. Mater. 2016, 28, 6459. |
[11] | Truong, Q. D.; Devaraju, M. K.; Honma, I. J. Power Sources 2017, 361, 195. |
[12] | NuLi, Y.; Yang, J.; Li, Y.; Wang, J. Chem. Commun. 2010, 46, 3794. |
[13] | Sun, X.; Bonnick, P.; Nazar, L. F. ACS Energy Lett. 2 016, 1, 297. |
[14] | Liang, Y.; Feng, R.; Yang, S.; Ma, H.; Liang, J.; Chen, J. Adv. Mater. 2012, 23, 640. |
[15] | Liu, B.; Luo, T.; Mu, G.; Wang, X.; Chen, D.; Shen, G. ACS Nano 2013, 7, 8051. |
[16] | Duffort, V.; Sun, X.; Nazar, L. F. Chem. Commun. 2016, 52, 12458. |
[17] | Ding, Y.; Ren, X.; Chen, D.; Wen, F.; Li, T.; Xu, F. ACS Appl. Energy Mater. 2022, 5, 3004. |
[18] | Sun, X.; Bonnick, P.; Duffort, V.; Liu, M.; Rong, Z.; Persson, K. A.; Ceder, G.; Nazar, L. F. Energy Environ. Sci. 2016, 9, 2273. |
[19] | Tang, M.; Li, H.; Wang, E.; Wang, C. Chin. Chem. Lett. 2018, 29, 232. |
[20] | Dawut, G.; Lu, Y.; Zhao, Q.; Liang, J.; Tao, Z. L.; Chen, J. Acta Phys.-Chim. Sin. 2016, 32, 1593. (in Chinese) |
[20] | ( 古丽巴哈尔?达吾提, 卢勇, 赵庆, 梁静, 陶占良, 陈军, 物理化学学报, 2016, 32, 1593.) |
[21] | McAllister, B. T.; Kyne, L. T.; Schon, T. B.; Seferos, D. S. Joule 2019, 3, 620. |
[22] | Qin, K.; Huang, J.; Holguin, K.; Luo, C. Energy Environ. Sci. 2020, 13, 3950. |
[23] | Song, Z.; Zhou, H. Energy Environ. Sci. 2013, 6, 2280. |
[24] | Williams, D. L.; Byrne, J. J.; Driscoll, J. S. J. Electrochem. Soc. 1969, 116, 2. |
[25] | Kumar, G.; Sivashanmugam, A.; Muniyandi, N.; Dhawan, S. K.; Trivedi, D. C. Synth. Met. 1996, 80, 279. |
[26] | Shadike, Z.; Tan, S.; Wang, Q. C.; Lin, R.; Hu, E.; Qu, D.; Yang, X. Q. Mater. Horiz. 2021, 8, 471. |
[27] | NuLi, Y.; Guo, Z.; Liu, H.; Yang, J. Electrochem. Commun. 2007, 9, 1913. |
[28] | NuLi, Y.; Chen, Q.; Wang, W.; Wang, Y.; Yang, J.; Wang, J. Sci. World J. 2014, 2014, 107918. |
[29] | Lu, Y.; Zhang, Q.; Li, L.; Niu, Z.; Chen, J. Chem 2018, 4, 2786. |
[30] | Chen, Q.; NuLi, Y.; Guo, W.; Yang, J.; Wang, J.; Guo, Y. Acta Phys.- Chim. Sin. 2013, 29, 2295. |
[31] | Ha, S. Y.; Lee, Y. W.; Woo, S. W.; Koo, B.; Kim, J. S.; Cho, J.; Lee, K.; Choi, N. S. ACS Appl. Mater. Interfaces 2014, 6, 4063. |
[32] | H?upler, B.; Wild, A.; Schubert, U. S. Adv. Energy Mater. 2015, 5, 1402034. |
[33] | Xie, J.; Zhang, Q. Small 2019, 15, 1805061. |
[34] | Sano, H.; Senoh, H.; Yao, M.; Sakaebe, H.; Kiyobayashi, T. Chem. Lett. 2012, 41, 1594. |
[35] | Senoh, H.; Sakaebe, H.; Sano, H.; Yao, M.; Kuratani, K.; Takeichi, N.; Kiyobayashi, T. J. Electrochem. Soc. 2014, 161, A1315. |
[36] | Pan, B.; Zhou, D.; Huang, J.; Zhang, L.; Burrell, A. K.; Vaughey, J. T.; Zhang, Z.; Liao, C. J. Electrochem. Soc. 2016, 163, A580. |
[37] | Debashis, T.; Viswanatha, H. M.; Harish, M. N. K.; Sampath, S. J. Electrochem. Soc. 2020, 167, 070561. |
[38] | Bitenc, J.; Pirnat, K.; Ban?i?, T.; Gaber??ek, M.; Genorio, B.; Randon-Vitanova, A.; Dominko, R. ChemSusChem 2015, 8, 4128. |
[39] | Song, Z.; Qian, Y.; Gordin, M. L.; Tang, D.; Xu, T.; Otani, M.; Zhan, H.; Zhou, H. Angew. Chem. Int. Ed. 2015, 54, 13947. |
[40] | Pan, B.; Huang, J.; Feng, Z.; Zeng, L.; He, M.; Zhang, L.; Vaughey, J. T.; Bedzyk, M. J.; Fenter, P.; Zhang, Z.; Burrell, A. K.; Liao, C. Adv. Energy Mater. 2016, 6, 1600140. |
[41] | Bitenc, J.; Pirnat, K.; ?agar, E.; Randon-Vitanova, A.; Dominko, R. J. Power Sources 2019, 430, 90. |
[42] | Bitenc, J.; Pirnat, K.; Mali, G.; Novosel, B.; Vitanova, A. R.; Dominko, R. Electrochem. Commun. 2016, 69, 1. |
[43] | Tian, J.; Cao, D.; Zhou, X.; Hu, J.; Huang, M.; Li, C. ACS Nano 2018, 12, 3424. |
[44] | Dong, H.; Tutusaus, O.; Liang, Y.; Zhang, Y.; Lebens-Higgins, Z.; Yang, W.; Mohtadi, R.; Yao, Y. Nat. Energy 2020, 5, 1043. |
[45] | Rodríguez-Pérez, I. A.; Yuan, Y.; Bommier, C.; Wang, X.; Ma, L.; Leonard, D. P.; Lerner, M. M.; Carter, R. G.; Wu, T.; Greaney, P. A.; Lu, J.; Ji, X. J. Am. Chem. Soc. 2017, 139, 13031. |
[46] | Cui, L.; Zhou, L.; Zhang, K.; Xiong, F.; Tan, S.; Li, M.; An, Q.; Kang, Y. M.; Mai, L. Nano Energy 2019, 65, 103902. |
[47] | Yang, H.; Xu, F. ChemPhysChem 2021, 22, 1455. |
[48] | Ban?i?, T.; Bitenc, J.; Pirnat, K.; Lautar, A. K.; Grdadolnik, J.; Vitanova, A. R.; Dominko, R. J. Power Sources 2018, 395, 25. |
[49] | Fan, X.; Wang, F.; Ji, X.; Wang, R.; Gao, T.; Hou, S.; Chen, J.; Deng, T.; Li, X.; Chen, L.; Luo, C.; Wang, L.; Wang, C. Angew. Chem. Int. Ed. 2018, 57, 7146. |
[50] | Wang, Y.; Liu, Z.; Wang, C.; Hu, Y.; Lin, H.; Kong, W.; Ma, J.; Jin, Z. Energy Storage Mater. 2020, 26, 494. |
[51] | Dong, H.; Liang, Y.; Tutusaus, O.; Mohtadi, R.; Zhang, Y.; Hao, F.; Yao, Y. Joule 2019, 3, 782. |
[52] | Ding, Y.; Chen, D.; Ren, X.; Cao, Y.; Xu, F. J. Mater. Chem. A 2022, 10, 14111. |
[53] | Cao, Y.; Wang, M.; Wang, H.; Han, C.; Pan, F.; Sun, J. Adv. Energy Mater. 2022, 12, 2200057. |
[54] | Li, J.; Jing, X.; Li, Q.; Li, S.; Gao, X.; Feng, X.; Wang, B. Chem. Soc. Rev. 2020, 49, 3565. |
[55] | Mao, M.; Luo, C.; Pollard, T. P.; Hou, S.; Gao, T.; Fan, X.; Cui, C.; Yue, J.; Tong, Y.; Yang, G.; Deng, T.; Zhang, M.; Ma, J.; Suo, L.; Borodin, O.; Wang, C. Angew. Chem., Int. Ed. 2019, 58, 17820. |
[56] | Sun, R.; Hou, S.; Luo, C.; Ji, X.; Wang, L.; Mai, L.; Wang, C. Nano Lett. 2020, 20, 3880. |
[57] | Li, S.; Liu, Y.; Dai, L.; Li, S.; Wang, B.; Xie, J.; Li, P. Energy Storage Mater. 2022, 48, 439. |
/
〈 |
|
〉 |