综述

双碳目标下太阳能制氢技术的研究进展

  • 安攀 ,
  • 张庆慧 ,
  • 杨状 ,
  • 武佳星 ,
  • 张佳颖 ,
  • 王雅君 ,
  • 李宇明 ,
  • 姜桂元
展开
  • a中国石油大学(北京) 重质油国家重点实验室 北京 102249
    b国家知识产权局专利局 北京 100000

安攀, 中国石油大学(北京)在读研究生, 2020年9月加入中国石油大学(北京)新能源与材料学院王雅君研究员课题组, 主要研究方向为光催化和光电催化.

张庆慧, 中国石油大学(北京)化学工艺专业硕士学位, 2008年9月起进入国家知识产权局专利局, 现任材料部催化剂处副处长, 长期从事化工、催化剂领域的专利审查工作, 2013年起参与专利复审案件的审理, 熟悉化工废气净化、废水处理等方向专利技术发展情况, 目前致力于催化剂, 尤其是光催化剂方向的研究工作. 截至目前参与局级课题5项, 发表文章2篇.

王雅君, 研究员, 博士生导师. 2006年于清华大学获学士学位, 2011年于清华大学获博士学位. 2013年至今于中国石油大学(北京)从事光催化、光电催化、纳米材料合成等方面的研究. 先后入选校优秀青年学者、石大学者、北京市科技新星等. 近年来在Energ. Environ. Sci.、Adv. Mater.、Appl. Catal. B-Environ.等刊物发表SCI收录论文40余篇. 担任Nanomaterials客座编辑和Chinese Chemistry Letter、Petroleum Science、颗粒学报青年编委. 获2016年教育部高等学校科学研究优秀成果奖(科学技术)自然科学奖一等奖, 获2021年中国分析测试协会科学技术奖(CAIA奖)一等奖等.

收稿日期: 2022-08-19

  网络出版日期: 2022-11-02

基金资助

国家重点研发计划(2019YFC1904500); 国家自然科学基金(52270115); 国家自然科学基金(21777080); 中国石油大学(北京)科学基金(2462019QNXZ05); 中国石油大学(北京)重质油国家重点实验室自主项目资助

Research Progress of Solar Hydrogen Production Technology under Double Carbon Target

  • Pan An ,
  • Qinghui Zhang ,
  • Zhuang Yang ,
  • Jiaxing Wu ,
  • Jiaying Zhang ,
  • Yajun Wang ,
  • Yuming Li ,
  • Guiyuan Jiang
Expand
  • aState Key Laboratory of Heavy Oil, China University of Petroleum (Beijing), Beijing 102249
    bChina National Intellectual Property Administration, Patent Administration, Beijing 100000
†These authors contributed equally to this work.

Received date: 2022-08-19

  Online published: 2022-11-02

Supported by

National Key Research and Development Program of China(2019YFC1904500); National Natural Science Foundation of China(52270115); National Natural Science Foundation of China(21777080); Science Foundation of China University of Petroleum (Beijing)(2462019QNXZ05); State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing)

摘要

“双碳目标”的实现需要精准的政策引导和开发可替代的清洁能源. 近年来, 氢能由于具有来源丰富、热值高、清洁低碳、应用场景多样等特点, 受到了学者们越来越多的关注. 在传统制氢技术中, 化石燃料制氢技术应用最为广泛, 但其制氢反应过程造成的能耗和温室气体释放量较大. 而光催化分解水制氢技术是将太阳能转换为氢能, 将太阳能以化学能的形式储存起来, 这样不仅能利用太阳能制取氢气, 而且可以将氢能与CO2结合起来生产高附加值的化学品, 在减少碳排放的同时, 实现碳氢资源的综合利用. 综述了可实现太阳能制氢的光催化制氢(PC)、光电催化制氢(PEC)和光伏电催化耦合制氢(PV-EC)技术的研究进展, 阐释了相关技术的基本原理, 介绍了制氢技术中的关键材料, 对三种制氢技术发展过程中太阳能制氢(STH)转化效率、材料稳定性的相关研究进行了详细总结. 最后对三种太阳能制氢技术面临的关键挑战和未来发展方向进行了探讨和展望.

本文引用格式

安攀 , 张庆慧 , 杨状 , 武佳星 , 张佳颖 , 王雅君 , 李宇明 , 姜桂元 . 双碳目标下太阳能制氢技术的研究进展[J]. 化学学报, 2022 , 80(12) : 1629 -1642 . DOI: 10.6023/A22080362

Abstract

The achievement of the “double carbon target” requires precise policy guidance and the development of alternative clean energy. In recent years, hydrogen energy has attracted more and more attention due to its rich sources, high heating value, low-carbon, and diverse application scenarios. Among the traditional hydrogen production technologies, fossil fuel hydrogen production technology is the most widely used, but the larger energy consumption and greenhouse gas emission are caused by its hydrogen production reaction process. Photocatalytic water splitting can transfer solar energy to hydrogen, which can store solar energy in the form of chemical energy. This strategy not only can utilize solar energy to generate hydrogen, but also can combine hydrogen with CO2 to produce high-value chemicals. Moreover, this technology can reduce carbon dioxide emissions and realize the comprehensive utilization of hydrocarbon resources. The research progress of photocatalytic (PC) hydrogen production, photoelectrocatalytic (PEC) hydrogen production and photovoltaic electrocatalytic (PV-EC) hydrogen production are reviewed. The basic principles of related technologies are explained, and the key materials in hydrogen production technology are introduced. The related researches of solar to hydrogen (STH) conversion efficiency and material stability are summarized in detail during the development of three hydrogen production technologies. Finally, the key challenges and future development directions are discussed and prospected for the three solar hydrogen production technologies.

参考文献

[1]
Gao, H. International Petroleum Economics 2021, 29, 1. (in Chinese)
[1]
( 高虎, 国际石油经济, 2021, 29, 1.)
[2]
Gong, X. Beijing Planning Review 2022, (01), 67. (in Chinese)
[2]
( 龚翔, 北京规划建设, 2022, (01), 67.)
[3]
Zhou, Y. M. China Development Observation 2021, (Z1), 56. (in Chinese)
[3]
( 周亚敏, 中国发展观察, 2021, (Z1), 56.)
[4]
Zhu, Y. F.; Yao, W. Q.; Zong, R. L. Chinese J. Anal. Chem. 2015, 43, 393. (in Chinese)
[4]
( 朱永法, 姚文清, 宗瑞隆, 分析化学 2015, 43, 393.)
[5]
Li, F. H.; Liu, Y. H.; Mao, B. D.; Li, L. H.; Huang, H.; Zhang, D. Q.; Dong, W. X.; Kang, Z. H.; Shi, W. D. Appl. Catal. B 2021, 292, 120154.
[6]
Zhou, Z. Y..; Xie, Y. N.; Zhu, W. Z.; Zhao, H. Y.; Yang, N. J.; Zhao, G. H. Appl. Catal. B 2020, 286, 119868.
[7]
Photovoltaic hydrogen production + coupled coal production million tons of methanol zero carbon emission project signed a cooperation agreement, Coal Chemical Industry 2020, 48, 44. (in Chinese)
[7]
(光伏制氢+耦合煤制百万吨甲醇零碳排放项目签署合作协议,煤化工, 2020, 48, 44.)
[8]
Yang, Z.; Gao, X. X.; Jiang, X. J. Metal Mine 2017, (03), 167. (in Chinese)
[8]
( 杨状, 高星星, 姜效军, 金属矿山 2017, (03), 167.)
[9]
Yang, Z.; Gao, X. X.; Zhao, T. L.; Li, Y.; Jiang, X. J.; Wang, J. Metal Mine 2017, (07), 173. (in Chinese)
[9]
( 杨状, 高星星, 赵通林, 李洋, 姜效军, 王舰, 金属矿山 2017, (07), 173.)
[10]
Yang, Z.; Gao, X. X.; Zhao, T. L.; Li, Y.; Wang, J.; Tao, D. P.; Niu, W. J. Journal of Liaoning University of Science and Technology 2017, 40, 368. (in Chinese)
[10]
( 杨状, 高星星, 赵通林, 李洋, 王舰, 陶东平, 牛文杰, 辽宁科技大学学报, 2017, 40, 368.)
[11]
Li, C. Solar Energy Conversion Science and Technology, Science Press, Beijing, 2020. (in Chinese)
[11]
( 李灿, 太阳能转化科学与技术, 科学出版社, 北京, 2020.)
[12]
Kudo, A.; Kato, H.; Tsuji, I. Chem. Lett. 2004, 33, 1534.
[13]
Maeda, K.; Domen, K. J. Phys. Chem. C 2007, 111, 7851.
[14]
Osterloh, F. E. Chem. Mater. 2008, 20, 35.
[15]
Kumar, A.; Navakoteswara Rao, V.; Kumar, A.; Mushtaq, A.; Sharma, L.; Halder, A.; Pal, S. K.; Shankar, M. V.; Krishnan, V. ACS Appl. Energy Mater. 2020, 12, 12134.
[16]
Wang, J.; Yang, Z.; Yao, W. Q.; Gao, X. X.; Tao, D. P. Appl. Catal. B 2018, 238, 629.
[17]
Abdul Nasir, J.; Islama, N.; Rehmana, Z.; Butlerc, I. S.; Munird, A.; Nishina, Y. Mater. Chem. Phys. 2021, 259, 124140.
[18]
Fujishima, A.; Honda, K. Nature 1972, 238, 37.
[19]
Xiao, Y. Q. Ph.D. Dissertation, University of Electronic Science and Technology of China, Chengdu, 2021. (in Chinese)
[19]
( 肖业权, 博士论文, 电子科技大学, 成都, 2021.)
[20]
Ganguly, P.; Moussab Harb, M.; Cao, Z.; Cavallo, L.; Breen, A.; Dervin, S.; Dionysiou, D. D.; Pillai, S. C. ACS Energy Lett. 2019, 4, 1687.
[21]
Zhang, Y. C.; Nisha, A.; Pan, L.; Zhang, X. W.; Zou, J. J. Adv. Sci. 2019, 1900053.
[22]
Biswal, B. P.; Vignolo-González, H. A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsch, B. V. J. Am. Chem. Soc. 2019, 141, 11082.
[23]
Wang, Y. J.; Chen, J.; Liu, L. M.; Xi, X. X.; Li, Y. M.; Geng, Z. L.; Jiang, G. Y.; Zhao, Z. Nanoscale 2019, 11, 1618.
[24]
Wang, Y. J.; Zhang, Y. N.; Jiang, Z. Q.; Jiang, G. Y.; Zhao, Z.; Wu, Q. H.; Liu, Y.; Xu, Q.; Duan, A. j.; Xu, C. M. Appl. Catal. B 2016, 185, 307.
[25]
Cheng, H. F.; Huang, B. B.; Dai, Y. Nanoscale 2014, 6, 2009.
[26]
Shi, M., Li, G.N.; Li, J. M.; Jin, X.; Tao, X. P.; Zeng, B.; Pidko, E. A.; Li, R. G.; Li, C. Angew. Chem., Int. Ed. 2020, 59, 6590.
[27]
Tang, Z. K.; Yin, W. J.; Le, Z.; Wen, B.; Zhang, D. Y.; Liu, L. M.; Lau, W. M. Sci. Rep. 2016, 6, 32764.
[28]
Mi, Y.; Wen, L. Y.; Wang, Z. J.; Cao, D. W.; Xu, R.; Fang, Y. G.; Yilong Zhou, Y. L.; Lei, Y. Nano Energy 2016, 30, 109.
[29]
Fang, W. L.; Yao, S.; Wang, L.; Li, C. H. J. Alloys Compd. 2021, 891, 162081.
[30]
Di, J.; Xia, J. X.; Chisholm, F. M.; Zhong, J.; Chen, C.; Cao, X. Z.; Dong, F.; Chi, Z.; Chen, H. L.; Weng, Y. X.; Xiong, J.; Yang, S. Z.; Li, H. M.; Liu, Z.; Dai, S. Adv. Mater. 2019, 31, 1807576.
[31]
Lin, H. Y.; Lee, T. H.; Sie, C. Y. Int. J. Hydrogen Energy. 2008, 33, 4055.
[32]
Zhang, G. K.; Zou, X.; Gong, J.; He, F. S.; Zhang, H.; Zhang, Q.; Liu, Y.; Yang, X.; Hu, B. J. Alloys Compd. 2006, 425, 76.
[33]
Zhang, G. K.; He, F. S.; Zou, X.; Gong, J.; H. B.; Zhang, H.; Zhang, Q.; Liu, Y. J. Alloys Compd. 2007, 427, 82.
[34]
Unal, U.; Matsumoto, Y.; Tamoto, N.; Koinuma, M.; Machida, M.; Izawa, K. J. Solid State Chem. 2006, 179, 33.
[35]
Tian, M. K.; Shangguan, W. F. J. Inorg. Mater. 2011, 26, 513. (in Chinese)
[35]
( 田蒙奎, 上官文峰, 无机材料学报, 2011, 26, 513.)
[36]
Zou, Z. G.; Ye, J. H.; Arakawa, H. Chem. Phys. Lett. 2000, 332, 271.
[37]
Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082.
[38]
Song, K.; Yang, J.; Jiang, P. F.; Gao, W. L.; Cong, R. H.; Yang, T. Eur. J. Inorg.Chem. 2015, 5786.
[39]
Chiou, Y. C.; Kumar, U.; Wu, J. C. S. Appl. Catal., A 2009, 357, 73.
[40]
Ma, Z. J.; Wu, K. C.; Sun, B. Z.; He, C. J. Mater. Chem. A 2015, 3, 8466.
[41]
Lin, X. P.; Huang, F. Q.; Wang, W. D.; Shan, Z. C.; Shi, J. L. Dyes Pigm. 2008, 78, 39.
[42]
Lin, X. P.; Huang, F. Q.; Wang, W. D.; Zhang, K. L. Appl. Catal., A 2006, 307, 257.
[43]
Kako, T.; Kikugawa, N.; Ye, J. H. Catal. Today 2008, 131, 197.
[44]
Hara, Y.; Takashima, T.; Kobayashi, R.; Abeyrathna, S.; Ohtani, B.; Irie, H. Appl. Catal. B 2017, 209, 663.
[45]
Maeda, K.; Lu, D. L.; Domen, K. Chem. Eur. J. 2013, 19, 4986.
[46]
Zhang, L.; Song, Y.; Feng, J. Y.; Fang, T.; Zhong, Y. J.; Li, Z. S.; Zou, Z. G. Int. J. Hydrogen Energy. 2014, 39, 7697.
[47]
Zhong, Y. J.; Li, Z. S.; Zhao, X.; Fang, T.; Huang, H. T.; Qian, Q. F.; Chang, X. F.; Wang, P.; Yan, S. C.; Yu, Z. T.; Zou, Z. G. Adv. Funct. Mater. 2016, 26, 7156.
[48]
Higashi, M.; Abe, R.; Teramura, K.; Takata, T.; Ohtani, B.; Domen, K. Chem. Phys. Lett. 2008, 452, 120.
[49]
Yamasita, D.; Takata, T.; Hara, M.; Kondo, J. N.; Domen, K. Solid State Ionics 2004, 172, 591.
[50]
Liu, M. Y.; You, W. S.; Lei, Z. B.; Takata, T.; Domen, K. ; Li, C. Chin. J. Catal. 2006, 27, 556.
[51]
Wu, P.; Wang, J. R.; Zhao, J.; Guo, L. J.; Osterloh, F. E. Chem. Commun. 2014, 50, 15521.
[52]
Patnaik, S.; Martha, S.; Parida, K. M. RSC Adv. 2016, 6, 46929
[53]
Wang, J.; Yang, Z.; Gao, X. X.; Yao, W. Q.; Wei, W. Q.; Chen, X. J.; Zong, R. L.; Zhu, Y. F. Appl. Catal. B 2017, 217, 169.
[54]
Qi, K. Z.; Lv, W. X.; Khan, I.; Liu, S. Y. Chin. J. Catal. 2020, 41, 114.
[55]
Wang, D.K.; Zeng, H.; Xiong, X.; Wu, M. F.; Xia, M. R.; Xie, M. L.; Zou, J. P.; Luo, S. L. Sci. Bull. 2020, 65, 113.
[56]
Zhang, H.; Wang, L.; Xu, X. X. Journal of Functional Polymers. 2019, 32, 140. (in Chinese)
[56]
( 张杭, 王磊, 徐航勋, 功能高分子学报, 2019, 32, 140.)
[57]
Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48, 2109
[58]
Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature. 2001, 414, 625.
[59]
Pan, C.; Takata, T.; Nakabayashi, M.; Matsumoto, T.; Shibata, N.; Ikuhara, Y.; Domen, K. Angew. Chem., nt. Ed. 2015, 54, 2955.
[60]
Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440, 295.
[61]
Wang, L.; Wan, Y. Y.; Ding, Y. J.; Wu, S. K.; Zhang, Y.; Zhang, X. L.; Zhang, G. Q.; Xiong, Y. J.; Wu, X. J.; Yang, J. L.; Xu, H. X. Adv. Mater. 2017, 29, 1702428.
[62]
Jing, D. W.; L. Guo, L. J. J. Phys. Chem. B 2006, 110, 11139.
[63]
Zhu, C.; Liu, C. G.; Zhou, Y. J.; Fu, Y. J.; Guo, S. J.; Li, H.; Zhao, S. Q.; Huang, H.; Liu, Y.; Kang, Z. H. Appl. Catal. B 2017, 216, 114.
[64]
Ye, H. F.; Shi, R.; Yang, X.; Fu, W. F.; Chen, Y. Appl. Catal. B 2018, 233, 70.
[65]
Shi, R.; Ye, H. F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y. X.; Lin, Z. S.; Fu, W. F.; Che, C. M.; Chen, Y. Adv. Mater. 2018, 30, 1705941.
[66]
Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; J?ckel, F.; Feldmann, J.; Würthner, F.; Stolarczyk, J. K. Nat. Energy 2018, 3, 862.
[67]
Liu, W.; Cao, L. L.; Cheng, W. R.; Cao, Y. J.; Liu, X. K.; Zhang, W.; Mou, X. L.; Jin, L. L.; Zheng, X. S.; Che, W.; Liu, Q. H.; Yao, T.; Wei, S. Q. Angew. Chem., Int. Ed. 2017, 56, 9312.
[68]
Lin, L. H.; Lin, Z. Y.; Zhang, J.; Cai, X.; Lin, W.; Yu, Z. Y.; Wang, X. C. Nat. Catal. 2020, 3, 649.
[69]
Li, Y. R.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Zhang, Z.; Meng, F. Q.; Zhang, Q. H.; Huangfu, Y. L.; Zhao, D. M.; Gu, L.; Shen, S. H. Chem. Sci. 2021, 12, 3633.
[70]
Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; Narushima, R.; Okunaka, S.; Shibata, N.; Takata, T.; Hisatomi, T.; Domen, K. Nature 2021, 598, 304.
[71]
Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520.
[72]
Qi, Y.; Zhang, F. X. Acta Chim. Sinica 2022, 80, 827. (in Chinese)
[72]
( 祁育, 章福祥, 化学学报 2022, 80, 827.)
[73]
Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Chem. Rev. 2014, 114, 9987.
[74]
Wang, Y. J.; Bai, W. K.; Wang, H. Q.; Jiang, Y.; Han, S. L.; Sun, H. Q.; Li, Y. M.; Jiang, G. Y.; Zhao, Z.; Huan, Q. Dalton Trans. 2017, 46, 10734.
[75]
Wang, Y. J.; Bai, W. K.; Han, S. L.; Wang, H. Q.; Wu, Q. H.; Chen, J.; Jiang, G. Y.; Zhao, Z.; Xu, C. M.; Huan, Q. Curr. Catal. 2017, 6, 50.
[76]
Gan, J. Y.; Lu, X. H.; Tong, Y. X. Nanoscale 2014, 6, 7142.
[77]
Liu, X.; Wang, F. Y.; Wang, Q. Phys. Chem. Chem. Phys. 2012, 14, 7894.
[78]
McCrory, C. C. L.; Jung, S. H.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2015, 137, 4347.
[79]
Sarnowska, M.; Bienkowski, K.; Barczuk, P. J.; Solarska, R.; Augustynski, J. Adv. Energy Mater. 2016, 6, 1600526.
[80]
Sfaelou, S.; Pop, L. C.; Monfort, O.; Dracopoulos, V.; Lianos, P. Int. J. Hydrogen Energy 2016, 41, 5902.
[81]
Han, L.; Dong, S. J.; Wang, E. K. Adv. Mater. 2016, 28, 9266.
[82]
Kwong, W. L.; Lee, C. C.; Messinger, J. J. Phys. Chem. C 2016, 120, 10941.
[83]
Sayama, K.; Nomura, A.; Zou, Z. G.; Abe, R.; Abe, Y.; Arakawa, H. Chem. Commun. 2003, 290, 2908.
[84]
Qui?onero, J.; Villarreal, T. L.; Gómez, R. Appl. Catal. B 2016, 194, 141.
[85]
Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Energy Environ. Sci. 2015, 8, 731.
[86]
Antony, R. P.; Bassi, P. S.; Abdi, F. F.; Chiam, S. Y.; Ren, Y.; Barber, J.; Loo, J. S. C.; Wong, L. H. Electrochim. Acta 2016, 211, 173.
[87]
Bai, J.; Wang, R.; Li, Y. P.; Tang, Y. Y.; Zeng, Q. Y.; Xia, L. G.; Li, X. J.; Li, J. H.; Li, C. L.; Zhou, B. A. J. Hazard. Mater. 2016, 311, 51.
[88]
Xia, L. G.; Bai, J.; Li, J. H.; Zeng, Q. Y.; Li, X. J.; Zhou, B. X. Appl. Catal. B 2016, 183, 224.
[89]
Ayoung, B.; Choi, W.; Park, H. Appl. Catal. B 2011, 110, 207.
[90]
Warren, S. C.; Vo?tchovsky, K.; Dotan, H.; Leroy, C. M.; Cornuz, M.; Stellacci, F.; Hébert, C.; Rothschild, A.; Gr?tzel, M. Nat. Mater. 2013, 12, 842.
[91]
Tilley, S. D.; Cornuz, M.; Sivula, K.; Gr?tzel, M. Angew. Chem., Int. Ed. 2010, 49, 6405.
[92]
Wang, L.; Lee, C. Y.; Mazare, A.; Lee, K.; Müller, J.; Spiecker, E.; Schmuki, P. Chem. Eur. J. 2014, 20, 77.
[93]
LaTempa, T. J.; Feng, X. J.; Maggie Paulose, M.; Grimes, C. A. J. Phys. Chem. C 2009, 113, 16293.
[94]
Mohapatra, S. K.; John, S. E.; Banerjee, S.; Misra, M. Chem. Mater. 2009, 21, 3048.
[95]
Wu, L. Z.; Zhang, T. R. Sci. Bull. 2021, 66, 651.
[96]
Li, Y. B.; Takata, T.; Cha, D.; Takanabe, K.; Tsutomu Minegishi, T.; Jun Kubota, J.; Domen, K. Adv. Mater. 2012, 25, 125.
[97]
Xiao, Y. Q.; Feng, C.; Fu, J.; Wang, F. Z.; Li, C. L.; Kunzelmann, V. F.; Jiang, C. M.; Nakabayashi, M.; Shibata, N.; lan, D. ; Sharp, I. D.; Domen, K.; Li, Y. B. Nat. Catal. 2020, 3, 932.
[98]
Zheng, J. Y.; Zhou, H. J.; D: Zou, Y. Q.; Wang, R. L.; Lyu, Y. H.; Jiang, S. P.; Wang, S. Y. Energy Environ. Sci. 2019, 12, 8.
[99]
Zhang, Z. H.; Dua, R.; Zhang, L. B.; Zhu, H. B.; Zhang, H. N.; Wang, P. ACS Nano 2013, 7, 1709.
[100]
Yang, W.; Moon, J. J. Mater. Chem. A 2019, 7, 20467.
[101]
Wang, K.; Huang, D. W.; Yu, L.; Feng, K.; Li, L. T.; Harada, T.; Ikeda, S. ; Jiang, F. ACS Catal. 2019, 9, 3090.
[102]
Yokoyama, D.; Minegishi, T.; Jimbo, K.; Hisatomi, T.; Ma, G.; Katayama, M.; Kubota, J.; Katagiri, H.; Domen, K. Appl. Phys. Express. 2010, 3, 101202.
[103]
Paracchino, A.; Brauer, J. C.; Moser, J. E.; Thimsen, E.; Gr?tzel, M. J. Phys. Chem. C 2012, 116, 7341.
[104]
Hacialioglu, S.; Meng, F.; Jin, S. Chem. Commun. 2012, 48, 1174.
[105]
Gerischer, H. J. Electroanal. Chem. 1977, 82, 133.
[106]
Paracchino, A.; Mathews, N.; Hisatomi, T.; Stefik, M.; Tilley, S. D.; Gratzel, M. Energy Environ. Sci. 2012, 5, 8673.
[107]
Pan, L. F.; Kim, J. H.; Mayer, M. T.; Son, M.-K.; Ummadisingu, A.; Lee, J. S.; Hagfeldt, A.; Luo, J. S.; Gr?tzel, M. Nat. Catal. 2018, 1, 412.
[108]
Yang, W.; Kim, J. H.; Hutter, O. S.; Phillips, L. J.; Tan, J.; Park, J.; Lee, H.; Major, J. D.; Lee, J. S.; Moon, J. Nat. Commun. 2020, 11, 861.
[109]
Kim, J.; Yang, W.; Oh, Y.; Lee, H.; Lee, S.; Shin, H.; Kim, J.; Moon, J. J. Mater. Chem. A 2017, 5, 2180.
[110]
Tang, R.; Wang, X.; Lian, W.; Huang, J.; Wei, Q.; Huang, M.; Yin, Y.; Jiang, C.; Yang, S.; Xing, G.; Chen, S.; Zhu, C.; Hao, X. J.; Green, M. A.; Chen, T. Nat. Energy. 2020, 5, 587.
[111]
Zhou, Y.; Leng, M. Y.; Xia, Z.; Zhong, J.; Song, H. B.; Liu, X. S.; Yang, B.; Zhang, J. P.; Chen, J.; Zhou, K. H.; Han, J. B.; Cheng, Y. B.; Tang, J. Adv. Energy Mater. 2014, 4, 1301846.
[112]
Guijarro, N.; Lutz, T.; Lana-Villarreal, T.; O'Mahony, F.; Gomez, R.; Haque, S. A. J. Phys. Chem. Lett. 2012, 3, 1351.
[113]
Yang, W.; Kim, J. H.; Hutter, O. S.; Phillips, L. J.; Tan, J. W.; Park, J.; Lee, H.; Major, J. D.; Lee, J. S.; Moon, J. Nat. Commun. 2020, 11, 861.
[114]
Tan, J. W.; Yang, W.; Lee, H.; Park, J.; Kim, K.; Hutter, O. S.; Phillips, L. J.;Shim, S.; Yun, J.; Park, Y.;Lee, J.; Major, J. D.; Moon, J. Appl. Catal. B 2021, 286, 119890.
[115]
Zhou, H. P.; Feng, M. L.; Song, K. N.; Liao, B.; Wang, Y. C.; Liu, R. C.; Gong, X. N.; Zhang, D. K.; Cao, L. F.; Chen, S. J. Nanoscale 2019, 11, 22871.
[116]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
[117]
Hsueh, H. C.; Vass, H.; Clark, S. J.; Ackland.; Crain, J. Phys. Rev. B 1995, 51, 16750.
[118]
Wang, K.; Li, Y.; Li, L.; Wang, C.; Fang, Y.; Zhao, W.; Cai, H.; Sun, F.; Jiang, F. Appl. Catal. B 2021, 297, 120437.
[119]
Yang, W.; Moon, J. ChemSusChem 2019, 12, 1889.
[120]
Rovelli, L.; Tilley, S. D.; Sivula, K. ACS Appl. Mater. Interfaces 2013, 5, 8018.
[121]
Jiang, F. ;, Gunawan; Harada, T.; Kuang, Y.; Minegishi, T.; Domen, K.; Ikeda, S. J. Am. Chem. Soc. 2015, 137, 13691.
[122]
Tay, Y. F.; Kaneko, H.; Chiam, S. Y.; Lie, S.; Zheng, Q. S.; Wu, B.; Hadke, S. S.; Su, Z. H.; Bassi, P. S.; Bishop, D.; Sum, T. C.; Minegishi, T.; Barber, J.; Domen, K.; Wong, L. H. Joule 2018, 2, 537.
[123]
Feng, K.; Huang, D. W.; Li, L. T.; Wang, K.; Li, J. B.; Harada, T., Ikeda, S.; Jiang, F. Appl. Catal. B 2020, 268, 118438.
[124]
Jiang, F.; Li, S. T.; Ozaki, C.; Harada, T.; Ikeda, S. Sol. RRL. 2018, 2, 1700205.
[125]
Liu, G. J.; Ye, S.; Yan, P. L.; Xiong, F. Q.; Fu, P.; Wang, Z. L.; Chen, Z.; Shi, J. Y.; Li, C. Energy Environ. Sci. 2016, 9, 1327.
[126]
Victoria, M.; Haegel, N.; Peters, I. M.; Sinton, R.; J?ger-Waldau, A.; del Ca?izo, C.; Breyer, C.; Stocks, M.; Blakers, A.; Kaizuka, I.; Komoto, K.; Smets, A. Joule 2021, 5, 1041.
[127]
Zeng, K.; Zhang, D. Prog. Energy Combust. Sci. 2010, 36, 307.
[128]
Liu, J. Y.; Zhang, H.; Lei, M. J.; Xue, Y. Z. Renewable Energy 2014, 32, 1603. (in Chinese)
[128]
( 刘金亚, 张华, 雷明镜, 薛演振, 可再生能源 2014, 32, 1603.)
[129]
Lin, J. Y.; Zhu, L. N.; Zhu, L. Y. Contemporary Chemical Industry 2021, 50, 2429. (in Chinese)
[129]
( 林佳怡, 朱丽娜, 朱凌岳, 当代化工 2021, 50, 2429.)
[130]
Lewis, N. S. Science 2016, 351, aad1920.
[131]
Nielander, A. C.; Shaner, M. R.; Papadantonakis, K. M.; Francis, S. A.; Lewis, N. S. Energy Environ. Sci. 2015, 8, 16.
[132]
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446.
[133]
Khaselev, O.; Turner, J. A. Science 1998, 280, 425.
[134]
Chatterjee, P.; Ambati, M. S. K.; Chakraborty, A. K.; Chakrabortty, S.; Biring, S.; Ramakrishna, S.; Wong, T. K. S.; Kumar, A.; Lawaniya, R.; Dalapati, G. K. Energy Convers. Manage. 2022, 261, 115648.
[135]
Bonke, S. A.; Wiechen, M.; MacFarlane, D. R.; Spiccia, L. Energy Environ. Sci. 2015, 8, 2791.
[136]
Sapountzi, F. M.; Gracia, J. M.; Weststrate, C. J.; Fredriksson, H. O. A.; Niemantsverdriet, J. W. Energy Combust. Sci. 2017, 58, 1.
[137]
Ager, J. W.; Shaner, M. R.; Walczak, K. A.; Sharp, I. D.; Ardo, S. Energy Environ. Sci. 2015, 8, 2811.
[138]
Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Science 2016, 352, aad4424.
[139]
Zhang, K.; Ma, M.; Li, P.; Wang, D. H.; Park, J. H. Adv. Energy. Mater. 2016, 6, 1600602.
[140]
Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J. Chem. Soc. Rev. 2017, 46, 4645.
[141]
McCrory, C. C. L.; Jung, S. H.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2015, 137, 4347.
[142]
Xu, B. M. Democracy and Science 2017, (05), 23. (in Chinese)
[142]
( 徐保民, 民主与科学 2017, (05), 23.)
[143]
Welter, K.; Becker, J. P.; Finger, F.; Jaegermann, W.; Smirnov, V. Energy Fuels 2021, 35, 839.
[144]
Finger, F.; Welter, K.; Urbain,F.; Smirnov, V.; Kaiser, B.; Jaegermann, W. Z. Phys. Chem. 2020, 234, 1055.
[145]
Urbain, F.; Smirnov, V.; Becker, J. P.; Rau, U.; Ziegler, J.; Kaiser, B.; Jaegermann, W.; Finger, F. Sol. Energy Mater. Sol. Cells 2015, 140, 275.
[146]
Xiao, X.; Liu, S. S.; Huang, D. K.; Lv, X. W.; Li, M.; Jiang, X. X.; Tao, L. M.; Yu, Z. H.; Shao, Y.; Wang, M. K.; Shen, Y. ChemSusChem 2019, 12, 434.
[147]
Luo, J. S.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Gr?tzel, M. Science 2014, 345, 1593.
[148]
Huang, H. Engineering Research Engineering from an Interdisciplinary Perspective. 2017, 9, 547. (in Chinese)
[148]
( 黄辉, 工程研究-跨学科视野中的工程, 2017, 9, 547.)
[149]
Li, R. G. Chin. J. Catal. 2017, 38, 5.
[150]
Wang, Z. L.; Wang, L. Z. Sci. China Mater. 2018, 61, 806.
[151]
Wu, Z.; Sun, L.; Lin, C. J. Electrochemistry 2019, 25, 529. (in Chinese)
[151]
( 吴芝, 孙岚, 林昌健, , 电化学 2019, 25, 529.)
[152]
Yao, T. T.; An, X. R.; Han, H. X.; Chen, J. Q-J.; Li, C. Adv. Energy Mater. 2018, 8, 1800210.
[153]
Saraswat, S. K.; Rodene, D. D.; Gupta, R. B. Renewable Sustainable Energy Rev. 2018, 89, 228.
[154]
Stier, W.; Prezhdo, O. V. J. Mol. Struct.: THEOCHEM. 2003, 630, 33.
[155]
Sang, L. X.; Zhang, Y. D.; Wang, J.; Liu, Z. L. Journal of Beijing University of Technology 2016, 42, 1082. (in Chinese)
[155]
( 桑丽霞, 张钰栋, 王军, 刘中良, 北京工业大学学报, 2016, 42, 1082.)
[156]
Yang, J.; Sun, H. R.; Zhang, W. S.; Zhang, D. H.; Hu, Y.; Zhang, W.; Guo, Y. Q. Power Station Systems Engineering. 2022, 38, 79. (in Chinese)
[156]
( 杨锦, 孙浩然, 张文帅, 张定海, 胡洋, 张伟, 郭宇强, 电站系统工程, 2022, 38, 79.)
文章导航

/