综述

用于制备全息光波导的光致聚合物的研究进展

  • 郭斌 ,
  • 王铭轩 ,
  • 张荻琴 ,
  • 孙敏远 ,
  • 毕勇 ,
  • 赵榆霞
展开
  • a 中国科学院理化技术研究所 光化学转换与功能材料重点实验室 北京 100190
    b 中国科学院理化技术研究所 应用激光研究中心 北京 100190
    c 中国科学院大学 化学科学学院 北京 100049
    d 中国科学院大学 未来技术学院 北京 100049

郭斌, 中国科学院理化技术研究所有机化学专业在读博士生, 主要从事光聚合材料的研究.

赵榆霞, 中国科学院理化技术研究所研究员, 博士生导师. 2001年在中科院理化技术研究所获博士学位, 入选北京市科技新星和江苏省双创人才, 获得军队科技进步二等奖. 主要研究方向为光聚合材料与光聚合技术、光疗药物和水溶性功能聚合物.

收稿日期: 2022-11-14

  网络出版日期: 2023-03-09

基金资助

国防科技创新特区项目(19-163-21-TS-001-073-01)

Research Progress of Photopolymers for the Preparation of Holographic Optical Waveguide

  • Bin Guo ,
  • Mingxuan Wang ,
  • Diqin Zhang ,
  • Minyuan Sun ,
  • Yong Bi ,
  • Yuxia Zhao
Expand
  • a Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    b Research Center for Applied Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    c School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
    d School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
* E-mail: ; Tel.: 010-82543569; 010-62554670

Received date: 2022-11-14

  Online published: 2023-03-09

Supported by

National Defence Science and Technology Innovation Special Zone Project(19-163-21-TS-001-073-01)

摘要

全息光波导具有体积小、重量轻、成像清晰、设计灵活、可为使用者提供较大的眼动范围等诸多优势, 是头戴式增强现实显示器(HMD-AR)中最实用的波导耦合技术. 为提升HMD-AR系统的成像能力, 扩大其视场范围, 作为耦入和耦出元件的体全息光栅(VHG)须具有高的折射率调制度(Δn). 光致聚合物是制造高性能透明VHG材料中最有潜力的一种记录介质. 本综述介绍了HMD-AR中全息光波导的工作原理和光致聚合物VHG的制备原理, 梳理了近期该领域中光致聚合物的研究进展, 归纳总结了光致聚合物配方中的光引发体系、成膜树脂、记录单体和纳米粒子等添加剂以及记录介质的后处理方式对其全息光学性能的影响, 以期为设计新组分、研发Δn更高的记录介质、制备性能更优的HMD-AR提供指导.

本文引用格式

郭斌 , 王铭轩 , 张荻琴 , 孙敏远 , 毕勇 , 赵榆霞 . 用于制备全息光波导的光致聚合物的研究进展[J]. 化学学报, 2023 , 81(4) : 393 -405 . DOI: 10.6023/A22110461

Abstract

Holographic optical waveguide is the most practical waveguide coupling technology for head-mounted augmented reality displays (HMD-AR) due to its advantages of small size, lightweight, clear imaging, flexible design, and a large eye-movement range for users. To enhance the imaging capability of the HMD-AR system and expand its field of view, the volume holographic gratings (VHG) used as the coupling-in and coupling-out elements must have a high refractive index modulation (Δn). Photopolymer is one of the most promising recording media for manufacturing high-performance transparent VHG. The working principle of holographic optical waveguide in HMD-AR and the preparation principle of photopolymer VHG are introduced, the recent research progress of photopolymers in this field is reviewed, the influence of different components in photopolymer formulations and the post-treatment methods of the recording media on their holographic optical properties are summarized, mainly including: (1) the composition of the photoinitiator systems; (2) the crosslink density, molecular weight and refractive index of the film-forming resins; (3) the refractive index, addition and size of the writing monomers; (4) the additive of nanoparticles, chain transfer agents, free radical scavengers and plasticisers; (5) post-treatment methods such as heating and/or light. It is expected to provide guidance for designing new components, developing recording media with higher Δn, and fabricating HMD-AR with better performance.

参考文献

[1]
Cakmakci, O.; Rolland, J. J. Disp. Technol. 2006, 2, 199.
[2]
Rolland, J.; Cakmakci, O. Opt. Photonics News 2009, 20, 20.
[3]
Carmigniani, J.; Furht, B.; Anisetti, M.; Ceravolo, P.; Damiani, E.; Ivkovic, M. Multimed. Tools. Appl. 2011, 51, 341.
[4]
Kress, B.; Starner, T. In Photonic Applications for Aerospace, Commercial, and Harsh Environments IV, Eds.: Kazemi, A. A.; Kress, B. C.; Thibault, S., SPIE, Baltimore, 2013, pp. 62-74.
[5]
Weng, Y. S. Ph.D. Dissertation, Southeast University, Nanjing, 2019. (in Chinese)
[5]
(翁一士, 博士论文, 东南大学, 南京, 2019.)
[6]
Kemeny, A.; Chardonnet, J.-R.; Colombet, F. V. In Getting Rid of Cybersickness, Springer, Cham, 2020, pp. 63-91.
[7]
Yoshida, T.; Tokuyama, K.; Takai, Y.; Tsukuda, D.; Kaneko, T.; Suzuki, N.; Anzai, T.; Yoshikaie, A.; Akutsu, K.; Machida, A. J. Soc. Inf. Disp. 2018, 26, 280.
[8]
Xie, X. L.; Peng, H. Y.; Ni, M. L. Holographic Polymer Materials, Science Press, Beijing, 2020, pp. 16-20. (in Chinese)
[8]
(解孝林, 彭海炎, 倪名立, 全息高分子材料, 科学出版社, 北京, 2020, pp. 16-20.)
[9]
Thomas, J.; Christenson, C. W.; Blanche, P.-A.; Yamamoto, M.; Norwood, R. A.; Peyghambarian, N. Chem. Mater. 2011, 23, 416.
[10]
Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Nat. Nanotechnol. 2015, 10, 308.
[11]
Cody, D.; Naydenova, I.; Mihaylova, E. Appl. Opt. 2013, 52, 489.
[12]
Pramitha, V.; Das, B.; Joseph, J.; Joseph, R.; Sreekumar, K.; Kartha, C. S. Opt. Mater. 2016, 52, 212.
[13]
Alim, M. D.; Glugla, D. J.; Mavila, S.; Wang, C.; Nystrom, P. D.; Sullivan, A. C.; McLeod, R. R.; Bowman, C. N. ACS Appl. Mater. Interfaces 2018, 10, 1217.
[14]
Tomita, Y.; Aoi, T.; Hasegawa, S.; Xia, F.; Wang, Y.; Oshima, J. Opt. Express 2020, 28, 28366.
[15]
Hu, Y.; Kowalski, B. A.; Mavila, S.; Podgórski, M.; Sinha, J.; Sullivan, A. C.; McLeod, R. R.; Bowman, C. N. ACS Appl. Mater. Interfaces 2020, 12, 44103.
[16]
Piao, J.-A.; Li, G.; Piao, M.-L.; Kim, N. J. Opt. Soc. Korea 2013, 17, 242.
[17]
Mukawa, H.; Akutsu, K.; Matsumura, I.; Nakano, S.; Yoshida, T.; Kuwahara, M.; Aiki, K. J. Soc. Inf. Disp. 2009, 17, 185.
[18]
Kowalski, B. A.; McLeod, R. R. J. Polym. Sci. B Polym. Phys. 2016, 54, 1021.
[19]
Liu, A. Ph.D. Dissertation, Southeast University, Nanjing, 2019. (in Chinese)
[19]
(刘奡, 博士论文, 东南大学, 南京, 2019.)
[20]
Bruder, F. K.; Hagen, R.; Rolle, T.; Weiser, M. S.; Facke, T. Angew. Chem. Int. Ed. 2011, 50, 4552.
[21]
Mikulchyk, T.; Martin, S.; Naydenova, I. Appl. Opt. 2017, 56, 6348.
[22]
Lalevée, J.; Allonas, X.; Jradi, S.; Fouassier, J.-P. Macromolecules 2006, 39, 1872.
[23]
Kawana, M.; Takahashi, J.-i.; Yasui, S.; Tomita, Y. J. Appl. Phys. 2015, 117, 053105.
[24]
Lin, S.-H.; Hsiao, Y.; Hsu, K.-Y. J. Opt. A: Pure Appl. Opt. 2009, 11, 024012.
[25]
Sabol, D.; Gleeson, M. R.; Liu, S.; Sheridan, J. T. J. Appl. Phys. 2010, 107, 053113.
[26]
Galli, P.; Evans, R. A.; Bertarelli, C.; Bianco, A. In Photosensitive Materials and their Applications, Eds.: McLeod, R. R.; Villalobos, I. P.; Tomita, Y.; Sheridan, J. T., SPIE, Online, 2020, pp. 123-130.
[27]
Industrial Photoinitiators: a Technical Guide, Translated by Wu,S. K.; Hong, X. Y., SciencePress, Beijing, 2022, pp. 88-89. (in Chinese)
[27]
(吴世康, 科学出版社, 北京, 洪啸吟译, 光引发剂原理和应用, 2022, pp. 88-89.)
[28]
Peng, H.; Bi, S.; Ni, M.; Xie, X.; Liao, Y.; Zhou, X.; Xue, Z.; Zhu, J.; Wei, Y.; Bowman, C. N. J. Am. Chem. Soc. 2014, 136, 8855.
[29]
Ni, M.; Peng, H.; Liao, Y.; Yang, Z.; Xue, Z.; Xie, X. Macromolecules 2015, 48, 2958.
[30]
Huang, W.; Chen, L.; Xuan, L. RSC Adv. 2014, 4, 38606.
[31]
Liu, L.; Xuan, L.; Zhang, G.; Liu, M.; Hu, L.; Liu, Y.; Ma, J. J. Mater. Chem. C 2015, 3, 5566.
[32]
Liu, M.; Liu, Y.; Zhang, G.; Peng, Z.; Li, D.; Ma, J.; Xuan, L. J. Phys. D: Appl. Phys. 2016, 49, 465102.
[33]
Chen, G.; Ni, M.; Peng, H.; Huang, F.; Liao, Y.; Wang, M.; Zhu, J.; Roy, V.; Xie, X. ACS Appl. Mater. Interfaces 2017, 9, 1810.
[34]
Zhao, X.; Sun, S.; Zhao, Y.; Liao, R.-Z.; Liao, Y.; Peng, H.; Xie, X. Science China Materials 2019, 62, 1921.
[35]
Smothers, W. K.; Monroe, B. M.; Chan, D. M. US 4959284, 1990.
[36]
Kim, G. W.; Jun, W. G.; Lee, S. K.; Cho, M. J.; Jin, J.-I.; Choi, D. H. Macromol. Res. 2005, 13, 477.
[37]
Tao, S.; Zhao, Y.; Wan, Y.; Zhai, Q.; Liu, P.; Wang, D.; Wu, F. Jpn. J. Appl. Phys. 2010, 49, 08KD01.
[38]
Wang, Z.; Zhang, D. Q.; Zhao, Y.; Zhang, Y. L.; Zhao, Y. X. Imaging Science and Photochemistry 2018, 36, 211. (in Chinese)
[38]
(王震, 张荻琴, 赵宇, 张云龙, 赵榆霞, 影像科学与光化学, 2018, 36, 211.)
[39]
Zhang, D. Q.; Zhao, Y.; Zhang, Z.; Zhu, J. H.; Zhao, Y. X. Acta Optica Sinica 2022, 42, 0209001. (in Chinese)
[39]
(张荻琴, 赵宇, 张震, 朱建华, 赵榆霞, 光学学报, 2022, 42, 0209001.)
[40]
Shen, Z.; Zhang, Y.; Liu, A.; Weng, Y.; Li, X. Opt. Mater. Express 2020, 10, 312.
[41]
Lu, W.-g.; Xiao, R.; Liu, J.; Wang, L.; Zhong, H.; Wang, Y. Opt. Lett. 2018, 43, 675.
[42]
Berneth, H.; R?lle, T.; Bruder, F.-K.; F?cke, T.; Weiser, M.-S.; H?nel, D. EP 2450893, 2012 [Chem. Abstr. 2012, 156, 651750.]
[43]
Narita, A.; Oshima, J.; Iso, Y.; Hasegawa, S.; Tomita, Y. Opt. Mater. Express 2021, 11, 614.
[44]
Berneth, H.; Bruder, F. K.; F?cke, T.; Hansen, S.; Kawamura, K.; Pitzer, L.; Kern, S.; Wewer, B.; R?lle, T. Polymers 2021, 13, 3517.
[45]
Nimmi, K. P.; Pramitha, V.; Sreekumar, K.; Kartha, C. S.; Joseph, R. J. Appl. Polym. Sci. 2012, 125, 1238.
[46]
Nakazawa, N.; Ono, M.; Takeuchi, S.; Sakurai, H.; Hirano, M. In Holographic Materials IV, Ed.: Trout, T. J., SPIE, San Jose, 1998, pp. 182-193.
[47]
Shelkovnikov, V.; Vasiliev, E.; Derevyanko, D.; Bukhtoyarova, A.; Berezhnaya, V.; Shundrina, I. J. Mater. Sci. 2023, 58, 983.
[48]
Shen, Z.; Weng, Y.; Zhang, Y.; Wang, C.; Liu, A.; Li, X. Polymers 2021, 13, 936.
[49]
Shi, Z.; Li, W.; Pi, H.; Liu, H.; Chen, H.; Li, P.; Jiang, X. Mater. Today Chem. 2022, 26, 100999.
[50]
Mihaylova, E. M. Coatings 2022, 12, 1765.
[51]
Galli, P.; Evans, R. A.; Bertarelli, C.; Bianco, A. J. Polym. Sci. 2021, 59, 1399.
[52]
Hu, P.; Li, J.; Jin, J.; Lin, X.; Tan, X. ACS Appl. Mater. Interfaces 2022, 14, 21544.
[53]
Zhang, D.; Zhao, Y.; Zhang, Z.; Guo, B.; Zhu, J.; Ye, Y.; Zhao, Y. J. Appl. Polym. Sci. 2022, 139, 52161.
[54]
Legentil, P.; Bereyziat, C.; Colard, M.; Lee, Y.; Gentet, M.-C.; Martinez, C. In Practical Holography XXXVI:, Displays, Eds.: Bjelkhagen, H. I.; Lee, S. H., SPIE, San Francisco, 2022, pp. 17-25.
[55]
Shen, Z.; Su, X.; Tian, C.; Jiang, Y.; Yang, Y. In Holography, Diffractive Optics, and Applications XII, Eds.: Zhou, C.; Poon, T. C.; Cao, L.; Yoshikawa, H., SPIE, Online, 2022, pp. 149-154.
[56]
Neipp, C.; Francés, J.; Martínez, F. J.; Fernández, R.; Alvarez, M. L.; Bleda, S.; Ortu?o, M.; Gallego, S. Polymers 2017, 9, 395.
[57]
Fernandez, R.; Bleda, S.; Gallego, S.; Neipp, C.; Márquez, A.; Tomita, Y.; Pascual, I.; Beléndez, A. Opt. Express 2019, 27, 827.
[58]
Bruder, F.-K.; Frank, J.; Hansen, S.; Lorenz, A.; Manecke, C.; Meisenheimer, R.; Mills, J.; Pitzer, L.; Pochorovski, I.; R?lle, T. In Digital Optical Technologies 2021, Eds.: Kress, B. C.; Peroz, C., SPIE, Online, 2021, pp. 26-49.
[59]
Hong, K.; Yeom, J.; Jang, C.; Hong, J.; Lee, B. Opt. Lett. 2014, 39, 127.
[60]
Yu, C.; Peng, Y.; Zhao, Q.; Li, H.; Liu, X. Appl. Opt. 2017, 56, 9390.
[61]
Cakmakci, O.; Qin, Y.; Bosel, P.; Wetzstein, G. Opt. Express 2021, 29, 35206.
[62]
Bruder, F.-K.; Frank, J.; Hansen, S.; Lorenz, A.; Manecke, C.; Meisenheimer, R.; Mills, J.; Pitzer, L.; Pochorovski, I.; R?lle, T. In Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) II, Eds.: Kress, B. C.; Peroz, C., SPIE, Online, 2021, pp. 118-140.
[63]
Peng, H.; Nair, D. P.; Kowalski, B. A.; Xi, W.; Gong, T.; Wang, C.; Cole, M.; Cramer, N. B.; Xie, X.; McLeod, R. R.; Bowman, C. N. Macromolecules 2014, 47, 2306.
[64]
Trentler, T. J.; Boyd, J. E.; Colvin, V. L. Chem. Mater. 2000, 12, 1431.
[65]
Li, F.; Zhu, Z. W.; Wang, Y. C. Imaging Science and Photochemistry 2009, 27, 103. (in Chinese)
[65]
(李芳, 朱宗文, 王跃川, 影像科学与光化学, 2009, 27, 103.)
[66]
Hu, Y.; Mavila, S.; Podgórski, M.; Kowalski, J. E.; McLeod, R. R.; Bowman, C. N. Macromolecules 2022, 55, 1822.
[67]
Chang, Y. M.; Yoon, S. C.; Han, M. Opt. Mater. 2007, 30, 662.
[68]
Lee, H.-j.; Sarwade, B. D.; Park, J.; Kim, E. Opt. Mater. 2007, 30, 637.
[69]
Kim, J.; Sarwade, B. D.; Oh, H.; Kim, E.; Lee, S.-G. J. Nanosci. Nanotechnol. 2008, 8, 4702.
[70]
Jeon, M.; Yoon, S. C.; Lee, J.; Han, M.; Lee, C. J. Nanosci. Nanotechnol. 2009, 9, 6912.
[71]
Khan, A.; Daugaard, A. E.; Bayles, A.; Koga, S.; Miki, Y.; Sato, K.; Enda, J.; Hvilsted, S.; Stucky, G. D.; Hawker, C. J. ChemComm 2009, 425.
[72]
Peng, H.; Wang, C.; Xi, W.; Kowalski, B. A.; Gong, T.; Xie, X.; Wang, W.; Nair, D. P.; McLeod, R. R.; Bowman, C. N. Chem. Mater. 2014, 26, 6819.
[73]
Mavila, S.; Sinha, J.; Hu, Y.; Podgórski, M.; Shah, P. K.; Bowman, C. N. ACS Appl. Mater. Interfaces 2021, 13, 15647.
[74]
Yoon, H.; Yoon, H.; Paek, S.-H.; Kim, J. H.; Choi, D. H. Opt. Mater. 2005, 27, 1190.
[75]
Cody, D.; Mihaylova, E.; O’Neill, L.; Naydenova, I. Opt. Mater. 2015, 48, 12.
[76]
Hata, E.; Tomita, Y. Opt. Lett. 2010, 35, 396.
[77]
Xue, X.; Hai, F.; Gao, L.; He, F.; Li, C.; Li, Y.; Huang, M. Optik 2013, 124, 6987.
[78]
Li, C.; Li, X.; Xue, X.; Huang, M. Optik 2014, 125, 6509.
[79]
Li, Y.; Wang, C.; Li, H.; Wang, X.; Han, J.; Huang, M. Appl. Opt. 2015, 54, 9799.
[80]
Jeong, Y.-C.; Jung, B.; Park, J.-K. ACS Appl. Mater. Interfaces 2012, 4, 4921.
[81]
Waldman, D. A.; Ingwall, R. T.; Dhal, P. K.; Horner, M. G.; Kolb, E. S.; Li, H.-Y. S.; Minns, R. A.; Schild, H. G. In Diffractive and Holographic Optics Technology III, Eds.: Cindrich, I.; Lee, S. H., SPIE, San Jose, 1996, pp. 127-141.
[82]
Mitsube, K.; Nishimura, Y.; Nagaya, K.; Takayama, S.; Tomita, Y. Opt. Mater. Express 2014, 4, 982.
[83]
Peng, H.; Yu, L.; Chen, G.; Xue, Z.; Liao, Y.; Zhu, J.; Xie, X.; Smalyukh, I. I.; Wei, Y. ACS Appl. Mater. Interfaces 2019, 11, 8612.
[84]
Hoque, M. A.; Cho, Y. H.; Kawakami, Y. React. Funct. Polym. 2007, 67, 1192.
[85]
Jeong, Y.-C.; Jung, B.; Park, J.-K. Macromol. Res. 2012, 20, 623.
[86]
Ni, M.; Chen, G.; Wang, Y.; Peng, H.; Liao, Y.; Xie, X. Compos. Part B: Eng. 2019, 174, 107045.
[87]
Tomita, Y.; Urano, H.; Fukamizu, T.-a.; Kametani, Y.; Nishimura, N.; Odoi, K. Opt. Lett. 2016, 41, 1281.
[88]
Ishizu, K.; Tsubaki, K.; Mori, A.; Uchida, S. Prog. Polym. Sci. 2003, 28, 27.
[89]
Heller, W. Rec. Chem. Prog. 1959, 20, 209.
[90]
Guo, J.; Gleeson, M. R.; Liu, S.; Sheridan, J. T. J. Opt. 2011, 13, 095602.
[91]
Cody, D.; Gribbin, S.; Mihaylova, E.; Naydenova, I. ACS Appl. Mater. Interfaces 2016, 8, 18481.
[92]
Ortu?o, M.; Fernandez, E.; Fuentes, R.; Gallego, S.; Pascual, I.; Beléndez, A. Opt. Mater. 2013, 35, 668.
[93]
Martin, S.; Naydenova, I. G.; Raghavendra, J. M.; Howard, R. G.; Toal, V. In Holography 2005:International Conference on Holography, Optical Recording, and Processing of Information, Eds.: Denisyuk, Y.; Sainov, V.; Stoykova, E., SPIE, Varna, 2006, pp. 37-44.
[94]
Cody, D.; Naydenova, I.; Mihaylova, E. J. Opt. 2011, 14, 015601.
[95]
Ortu?o, M.; Gallego, S.; Márquez, A.; Neipp, C.; Pascual, I.; Beléndez, A. Materials 2012, 5, 772.
[96]
Pi, H.; Li, W.; Shi, Z.; Chen, H.; Jiang, X. Polymers 2021, 13, 1754.
[97]
Matheson, M. S.; Auer, E.; Bevilacqua, E. B.; Hart, E. J. Am. Chem. Soc. 1949, 71, 497.
[98]
Gleeson, M. R.; Sheridan, J. T. JOSA B 2009, 26, 1736.
[99]
Jeong, Y.-C.; Heo, Y.; Lee, J.; Lee, S.; Ahn, D.; Park, J.-K. Opt. Mater. 2013, 35, 547.
[100]
Ramirez, M. G.; Sirvent, D.; Morales-Vidal, M.; Ortuno, M.; Martinez-Guardiola, F. J.; Frances, J.; Pascual, I. Polymers 2019, 11, 632.
文章导航

/