Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (10): 1244-1256.DOI: 10.6023/A21050238 Previous Articles     Next Articles

Review

基于石墨烯独特生物界面效应的功能化载体研究进展

岳华a, 马光辉a,b,*()   

  1. a 中国科学院过程工程研究所 北京 100190
    b 中国科学院大学 北京 100049
  • 投稿日期:2021-06-03 发布日期:2021-08-09
  • 通讯作者: 马光辉
  • 作者简介:

    岳华, 中国科学院过程工程研究所青年研究员. 2012年获中国科学院过程工程研究所博士学位, 研究方向聚焦于纳微粒子生物医药新剂型的理论探索和应用研究. 目前发表SCI论文45篇, 以第一/通讯作者在Nat. Commun.、Sci. Adv.、Adv. Drug Deliver. Rev.等权威期刊发表论文15篇(两篇论文他引超100次), 授权专利4项, 参编书籍2部. 对石墨烯生物学效应的研究工作被评价为“最系统的研究之一”. 被优选为中国科学院青年创新促进会会员, 担任第一届中日颗粒论坛、天然与仿生颗粒论坛学术秘书等. 获中国颗粒学会自然科学奖一等奖(R06)等省部级奖2项.

    马光辉, 中国科学院过程工程研究所研究员. 国家杰出青年基金(2001)获得者, 1993年在日本东京农工大学获得工学博士学位, 现任生化工程国家重点实验室主任. 主要研究方向为均一生物微球和微囊的制备及其在生化工程中的应用, 研究和开发用于生化分离、药物载体、免疫佐剂(疫苗递送系统)、细胞培养微载体、酶固定化载体等创新产品. 在Nat. Mater.、Nat. Bio. Eng.、Sci. Adv.、Nat. Commun.、Acc. Chem. Res.、JACS、Adv. Mater.等国际著名学术期刊上发表SCI论文431篇, ESI高被引9篇, 总他引超过10000次. 获中国发明专利授权 80余件、美国等国外专利授权12件, 专利技术和产品在国内外500多家单位得到应用. 获国家技术发明二等奖, 北京市科学技术一等奖, 第三世界青年女研究者奖, 中国化工学会基础研究成果一等奖等省部级一等奖多项.

  • 基金资助:
    北京市自然科学基金面上项目(2202056); 国家自然科学基金重点项目(32030062)

Advances in Functionalized Carriers Based on Graphene's Unique Biological Interface Effect

Hua Yuea, Guanghui Maa,b()   

  1. a Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    b University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-06-03 Published:2021-08-09
  • Contact: Guanghui Ma
  • Supported by:
    Beijing Municipal Natural Science Foundation(2202056); Key Program of National Natural Science Foundation of China(32030062)

The interaction of two-dimensional graphene and its derivatives with biological interfaces exhibits distinct properties and advantages over traditional dimensional particles, offering potential strategies for the design and development of functionalized pharmaceutical carriers. Apart from the excellent electrical, thermal and optical properties, the two-dimensional structure endows the graphene stronger interactions with cell membranes and then induces obvious cellular response. These responses include the horizontal friction/slant insertion or sandwiched superstructure, selective internalization by phagocytes, folding effect upon the limited intracellular space, autophagy phenomenon and invisible activation. Based on these unique interfacial effects and theoretical simulation mechanisms, rational designs will meet the needs of drug delivery, vaccine carriers, imaging and sensing, and photothermal therapy as well as good biosafety. This review concludes our researches of exploring the biological interface effects, dynamic molecular mechanism, and applications regarding graphene (oxide) in the past 10 years. Meanwhile, it also covers the latest international progress, in order to provide theoretical basis and prospective prediction for the design, construction, and application of efficient and safe graphene systems.

Key words: graphene, biological interface effect, 2D carrier, drug delivery, vaccine adjuvant