Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (2): 180-198.DOI: 10.6023/A21100489 Previous Articles Next Articles
Review
投稿日期:
2021-10-29
发布日期:
2021-12-20
通讯作者:
孙鸣
作者简介:
何磊, 男, 硕士研究生. 现就读于西北大学化工学院硕士研究生, 目前主要研究方向为新型分子筛的设计与制备. |
么秋香, 女, 博士(后). 西京学院理学院副教授, 高级工程师. 主持在研及完成国家自然科学基金青年项目1项、中国博士后基金站中特别资助项目1项、中国博士后基金面上项目1项、陕西省重点研发计划一般项目(工业领域)1项、陕西省自然科学基础研究计划-青年项目1项. 参与国家重点研发计划项目、陕西省科技统筹创新工程计划项目、陕煤化集团工业化项目、万吨级输送床粉煤快速热解试验装置改造与优化项目等. 发表学术论文30余篇, 申请专利14件. 目前担任国家自然科学基金委、陕西省科技技术厅等机构的项目评审专家. 目前主要研究方向为煤焦油催化转化制化学品的研究. |
孙鸣, 男, 博士. 西北大学化工学院教授, 博士生导师. 主持在研及完成国家重点研发计划项目课题1项、国家自然科学基金面上项目2项, 国家自然科学基金青年项目1项, 陕西省重点研发计划-重点产业创新链(群)-工业领域项目1项, 陕西省创新人才推进计划等. 参与国家863计划、国际科技合作等项目3项, 国家自然基金和陕西省重点研发计划项目5项. 获陕西青年科技奖、陕西省青年科技新星等. 发表学术论文60余篇, 以第一发明人授权专利20余件, 主持制定国家标准1项. 目前主要研究方向: (1)煤炭、生物质资源的转化与利用; (2)焦油梯级分离基础研究与应用开发; (3)焦油催化转化基础研究与应用开发. |
马晓迅, 男, 博士. 西北大学化工学院二级教授, 博士生导师. 现任国家碳氢资源清洁利用国际科技合作基地主任、陕北能源先进化工利用技术教育部工程研究中心主任、陕西省洁净煤转化工程技术研究中心主任、陕北能源化工产业发展协同创新中心主任等. 主持在研及完成国家自然科学基金重点项目、国家863计划、国家国际科技合作、科技支撑计划等项目/课题9项, 发表论文200余篇, 获得授权发明专利40余件. 主要研究方向为煤炭清洁高效转化利用、化工传质与分离、天然气化工、碳一化工、粉-粒流化床/喷动床、大气污染控制(烟气脱硫、脱硝)、化工过程优化和全生命周期分析等领域的科学研究与技术开发. |
基金资助:
Lei Hea, Qiuxiang Yaob, Ming Suna(), Xiaoxun Maa
Received:
2021-10-29
Published:
2021-12-20
Contact:
Ming Sun
Supported by:
Share
Lei He, Qiuxiang Yao, Ming Sun, Xiaoxun Ma. Progress in Preparation and Catalysis of Two-dimensional (2D) and Three-dimensional (3D) Zeolites[J]. Acta Chimica Sinica, 2022, 80(2): 180-198.
Finding year | Type of material | Structure code | Framework composition | Framework density/(T-atom/nm3) | Channel dimension | Ref. |
---|---|---|---|---|---|---|
2009 | ITQ-37 | -ITV | Ge, Si | 10.3 | 3D: 30×30×30 ring (R) | [34] |
2010 | ITQ-40 | -IRY | Ge, Si | 11.1 | 3D: 16×15×15 R | [36] |
2010 | ITQ-44 | IRR | Ge, Si | 11.8 | 3D: 18×12×12 R | [37] |
2011 | ITQ-43 | Ge, Si | 11.4 | 3D: 28×12×12 R | [38] | |
2013 | ITQ-51 | IFO | Al, P | 17.3 | 1D: 16 R | [39] |
2014 | NUD-1 | Ge, Si | 11.8 | 3D: 18×12×10 R | [40] | |
2014 | IPC-7 | Ge, Si | — | 3D: 14×12×10 R | [41] | |
2014 | SSZ-61 | *-SSO | Si | 16.7 | 1D: 18 R | [42] |
2014 | EMM-23 | *-EWT | Si | 14.5 | 3D: 24×21×10 R | [43] |
2015 | ITQ-53 | -IFT | Ge, Si | 11.6 | 3D: 14×14×14 R | [44] |
2015 | ITQ-54 | -IFU | Ge, Si | 12.1 | 3D: 20×14×12 R | [45] |
2015 | GeZA | Ge, Si | 12.0 | 3D: 15×14×12 R | [46] | |
2017 | SSZ-70 | *-SVY | Si | 16.3 | 2D: 14×10 R | [47] |
2018 | SYSU-3 | -SYT | Ge, Si | 12.2 | 3D: 24×8×8 R | [48] |
2018 | ECNU-9 | Al, Si | 16.0 | 3D: 18×12×12 R | [49] | |
2020 | NUD-6 | Si | 12.0 | 2D: 14×12 R | [50] | |
2020 | IDM-1 | Si | — | 3D: 16×8×8 R | [51] | |
2021 | HPM-14 | SOF | Ge, Si | 14.1 | 3D: 16×9×8 R | [52] |
2021 | ITQ-56 | IWS | Ge, Si | 12.4 | 3D: 22×12×12 R | [53] |
Finding year | Type of material | Structure code | Framework composition | Framework density/(T-atom/nm3) | Channel dimension | Ref. |
---|---|---|---|---|---|---|
2009 | ITQ-37 | -ITV | Ge, Si | 10.3 | 3D: 30×30×30 ring (R) | [34] |
2010 | ITQ-40 | -IRY | Ge, Si | 11.1 | 3D: 16×15×15 R | [36] |
2010 | ITQ-44 | IRR | Ge, Si | 11.8 | 3D: 18×12×12 R | [37] |
2011 | ITQ-43 | Ge, Si | 11.4 | 3D: 28×12×12 R | [38] | |
2013 | ITQ-51 | IFO | Al, P | 17.3 | 1D: 16 R | [39] |
2014 | NUD-1 | Ge, Si | 11.8 | 3D: 18×12×10 R | [40] | |
2014 | IPC-7 | Ge, Si | — | 3D: 14×12×10 R | [41] | |
2014 | SSZ-61 | *-SSO | Si | 16.7 | 1D: 18 R | [42] |
2014 | EMM-23 | *-EWT | Si | 14.5 | 3D: 24×21×10 R | [43] |
2015 | ITQ-53 | -IFT | Ge, Si | 11.6 | 3D: 14×14×14 R | [44] |
2015 | ITQ-54 | -IFU | Ge, Si | 12.1 | 3D: 20×14×12 R | [45] |
2015 | GeZA | Ge, Si | 12.0 | 3D: 15×14×12 R | [46] | |
2017 | SSZ-70 | *-SVY | Si | 16.3 | 2D: 14×10 R | [47] |
2018 | SYSU-3 | -SYT | Ge, Si | 12.2 | 3D: 24×8×8 R | [48] |
2018 | ECNU-9 | Al, Si | 16.0 | 3D: 18×12×12 R | [49] | |
2020 | NUD-6 | Si | 12.0 | 2D: 14×12 R | [50] | |
2020 | IDM-1 | Si | — | 3D: 16×8×8 R | [51] | |
2021 | HPM-14 | SOF | Ge, Si | 14.1 | 3D: 16×9×8 R | [52] |
2021 | ITQ-56 | IWS | Ge, Si | 12.4 | 3D: 22×12×12 R | [53] |
Entry | Catalyst | Zeolite character | Mass ratio of M/Z w/% | C1 convertion /% | Product selectivity/% | Condition (T/℃-p/MPa) (H2:COx) c | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
Topology (MR-Window size) | B acid a/ (mmol•g-1) | Olefins b | Aromatics | |||||||
1 | ZnCrOx/mordenite | MOR (12MR-0.70×0.65 nm; 8MR-0.57×0.26 nm、 0.48×0.34 nm) | 0.98 | ZnCrOx (50) | CO | 26 | 73 C2= | — | 360-2.5 H2:CO=2.5 | [94] |
2 | ZnAlO-SAPO-X (X:35/17/34/18/11/31/5/37) | LEV (8MR-0.48×0.36 nm) | 0.44 | ZnAlO (33.3) | 15 | 55.7 | — | 400-3 H2:CO=2 | [98] | |
ERI (8MR-0.51×0.36 nm) | 0.19 | ZnAlO (33.3) | 31 | 54 | — | 400-3 H2:CO=2 | ||||
CHA (8MR-0.38×0.38 nm) | 0.21 | ZnAlO (33.3) | 25 | 53 | — | 400-3 H2:CO=2 | ||||
AEI (8MR-0.38×0.38 nm) | 0.12 | ZnAlO (33.3) | 23 | 69 | — | 400-3 H2:CO=2 | ||||
AEL (10MR-0.65×0.40 nm) | 0.23 | ZnAlO (33.3) | 7 | 18.4 | — | 350-3 H2:CO=2 | ||||
ATO (12MR-0.54×0.54 nm) | 0.13 | ZnAlO (33.3) | 1 | 28.7 | — | 350-3 H2:CO=2 | ||||
AFI (12MR-0.73×0.73 nm) | 0.30 | ZnAlO (33.3) | 6 | 10.9 | — | 400-3 H2:CO=2 | ||||
FAU (12MR-0.74×0.74 nm) | 0.40 | ZnAlO (33.3) | 9 | 18.6 | — | 400-3 H2:CO=2 | ||||
3 | ZnCrOx/SAPO-17 | ERI (8MR-0.51×0.38 nm) | 0.28 | ZnCrOx (50) | 38 | 76.4 | — | 400-4 H2:CO=1 | [99] | |
4 | ZnCrOx-ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.13 | ZnCrOx (50) | 16 | — | 73.9 | 350-4 H2:CO=1 | [101] | |
5 | Cr2O3/ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.20 Strong acidity | SiO2 (20) | 49 | — | 2.99 mmol/(g•h) | 395-7 H2:CO=1 | [104] | |
6 | ZnO-Y2O3/SAPO-34 | CHA (8MR-0.38×0.38 nm) | — | ZnO-Y2O3 (6.7) | CO2 | 28 | 83.9 | — | 390-4 H2:CO2=4 | [108] |
7 | In-Zr/SAPO-34 | CHA (8MR-0.38×0.38 nm) | — | In-Zr (66.7) | 29 | 83.9 | — | 400-3 H2:CO2=3 | [109] | |
8 | ZnAlOx&H-ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.11 total | ZnAlOx (50) | 9 | — | 73.9 | 320-3 H2:CO2=3 | [111] | |
9 | Fe-K/α-Al2O3&P/ ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.27 strong acidity | Fe-K (15-10) P (8) | 36 | — | 35.5 (within CO) | 400-3 H2:CO2=1 | [112] | |
10 | ZnCrOx-ZnZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | — | ZnCrOx (50) | 20 | — | 81.8 | 320-5 H2:CO2=3 | [113] |
Entry | Catalyst | Zeolite character | Mass ratio of M/Z w/% | C1 convertion /% | Product selectivity/% | Condition (T/℃-p/MPa) (H2:COx) c | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
Topology (MR-Window size) | B acid a/ (mmol•g-1) | Olefins b | Aromatics | |||||||
1 | ZnCrOx/mordenite | MOR (12MR-0.70×0.65 nm; 8MR-0.57×0.26 nm、 0.48×0.34 nm) | 0.98 | ZnCrOx (50) | CO | 26 | 73 C2= | — | 360-2.5 H2:CO=2.5 | [94] |
2 | ZnAlO-SAPO-X (X:35/17/34/18/11/31/5/37) | LEV (8MR-0.48×0.36 nm) | 0.44 | ZnAlO (33.3) | 15 | 55.7 | — | 400-3 H2:CO=2 | [98] | |
ERI (8MR-0.51×0.36 nm) | 0.19 | ZnAlO (33.3) | 31 | 54 | — | 400-3 H2:CO=2 | ||||
CHA (8MR-0.38×0.38 nm) | 0.21 | ZnAlO (33.3) | 25 | 53 | — | 400-3 H2:CO=2 | ||||
AEI (8MR-0.38×0.38 nm) | 0.12 | ZnAlO (33.3) | 23 | 69 | — | 400-3 H2:CO=2 | ||||
AEL (10MR-0.65×0.40 nm) | 0.23 | ZnAlO (33.3) | 7 | 18.4 | — | 350-3 H2:CO=2 | ||||
ATO (12MR-0.54×0.54 nm) | 0.13 | ZnAlO (33.3) | 1 | 28.7 | — | 350-3 H2:CO=2 | ||||
AFI (12MR-0.73×0.73 nm) | 0.30 | ZnAlO (33.3) | 6 | 10.9 | — | 400-3 H2:CO=2 | ||||
FAU (12MR-0.74×0.74 nm) | 0.40 | ZnAlO (33.3) | 9 | 18.6 | — | 400-3 H2:CO=2 | ||||
3 | ZnCrOx/SAPO-17 | ERI (8MR-0.51×0.38 nm) | 0.28 | ZnCrOx (50) | 38 | 76.4 | — | 400-4 H2:CO=1 | [99] | |
4 | ZnCrOx-ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.13 | ZnCrOx (50) | 16 | — | 73.9 | 350-4 H2:CO=1 | [101] | |
5 | Cr2O3/ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.20 Strong acidity | SiO2 (20) | 49 | — | 2.99 mmol/(g•h) | 395-7 H2:CO=1 | [104] | |
6 | ZnO-Y2O3/SAPO-34 | CHA (8MR-0.38×0.38 nm) | — | ZnO-Y2O3 (6.7) | CO2 | 28 | 83.9 | — | 390-4 H2:CO2=4 | [108] |
7 | In-Zr/SAPO-34 | CHA (8MR-0.38×0.38 nm) | — | In-Zr (66.7) | 29 | 83.9 | — | 400-3 H2:CO2=3 | [109] | |
8 | ZnAlOx&H-ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.11 total | ZnAlOx (50) | 9 | — | 73.9 | 320-3 H2:CO2=3 | [111] | |
9 | Fe-K/α-Al2O3&P/ ZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | 0.27 strong acidity | Fe-K (15-10) P (8) | 36 | — | 35.5 (within CO) | 400-3 H2:CO2=1 | [112] | |
10 | ZnCrOx-ZnZSM-5 | MFI (10MR-0.53×0.56 nm; 0.51×0.55 nm) | — | ZnCrOx (50) | 20 | — | 81.8 | 320-5 H2:CO2=3 | [113] |
Typical material | Structure code | Framework composition (Si/Ta) | SDA | Swelling or pillared reagent b | Crystallization conditions | Layer Spacing /nm | Order | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
℃ | pH c | d | |||||||||
MCM-22P | MWW | Si, B, Al (92.4/7.1/0.5) | Hexamethyleneimine (HMI) | — | 120 | OH-: 4.3 | 230 | 2.7 | OR-BL | [115] | |
Ti-YNU-1 | MWW | Si, Ti (240) | Piperidine (PI) | — | 170 | — | 5 | 2.7 | OF-BL | [117] | |
PREFER | FER | Si | 4-amino-2,2,6,6-tetra-methylpiperidine | Me2Si(OEt)2 | 170 | H+: 1.0 | 7 | 1.2 | OR-BL | [118] | |
PLS-1 | CDO | Si, K (1/36) | Tetramethylammonium hydroxide (TMAOH) | 150 | — | 10 | 1.1 | ||||
MCM-47 | MWW | Si | Bis(N-methylpyrrolidi-nium) dibromide | 170 | OH-: 0.3 | 6 | 1.2 | ||||
MCM-36 | MWW | Si, B, Al (92.4/7.1/0.5) | HMI | C16TMA-OH, Tetraethylorthosilicate | ≈100 | — | 4 | 2.5 | OF-BL | [119] | |
MCM-22-BETE | MWW | Si, Al (50) | HMI, 1,4-bis(triethoxysilyl)- benzene (BTEB) | Cetyltrimethylammonium hydroxide solution (CTMA) | 135 | 12.5 | 11 | 4.1 | OF-BL | [120] | |
ITQ-2 | MWW | Si, Al | HMI | Hexadecyltrimethylammonium bromide (CTAB), Tetrapropylammonium hydroxide (TPAOH) | 135 | >9 | 11 | ≈4.5 | D-BL | [121] | |
EMM-10 | MWW | Si, Al (14.7) | Bis (N,N,N-trimethyl)-1,5-pentanediaminium dibromide | — | 170 | OH-: 14.4 | 3.3 | >2.6 | OF-BL | [126] | |
PREFER | FER | Si, Al (1/0, 1/0.2) | 4-amino-2,2,6,6-tetra-methylpiperidine | — | 170 | 9 | 15 | 0.7 | OR-BL | [124] | |
MCM-56 | MWW | Si, Al (15) | HMI, Sodium (Na) | — | — | OH-: 0.18 | — | 2.5 | D-BL | [127] | |
Selfpillared pentasil (SPP) | MFI/ MEL | Si, Al (pure, 200, 100) | — | Tetrabutylphosphonium (TBP)-silica, Tetrabutylammonium (TBA)-silica sols | 113 | OH-: 0, 100, 80 | 1.7, 1.3, 2 | — | V-BL | [129] | |
Mul-ZSM-5 | MFI | Si, Al (50) | [C22H45N+(CH3)2C6H12N+(CH3)2C6H13] Br2 (C22-6-6) | — | 150 | OH-: 0.24 | 5 | <2.8 | OR-BL | [20] | |
Uni-ZSM-5 | C22-6-6, no Na | 150 | OH-: 0.24 | 11 | — | D-BL | |||||
Mul-ZSM-5 | MFI | Si | C22-6-6 | — | 140 | OH-: 0.24 | <10 | 4.5 | OR-BL | [125] | |
Uni-ZSM-5 | [C22H45N+(CH3)2C8H16N+(CH3)2C6H13] Br2 (C22-8-6) | — | D-BL | ||||||||
MIT-1 | MWW | Si, Al (20) | C10H15-N+(CH3)2-C4H8-N+(CH3)2-C16H33 (Ada-i-16, i: 4, 5, 6) | — | 160 | OH-: 0.4 | 14~22 | — | D-BL | [130] | |
UJM1-P | MWW | Si, Al (20) | (Ada-4-16) | — | 160 | OH-: 0.2 | 7~14 | — | OR-BL | [131] | |
Mul-ZSM-5 | MFI | Si, Al (50) | C22-6-6 | TPAOH | 150 | OH-: 0.24 | 5 | — | OR-BL | [132] | |
Ml-MWW | MWW | Si, Al (1/0.066) | HMI, [(CH3O)3SiC3H6N- (CH3)2C18H37] Cl (TPOAC) | — | 150 | OH-: 0.3 | >6 | — | OR-BL | [26] | |
SL-MWW | HMI, TPOAC | 150 | OH-: 0.2 | 14 | — | D-BL | |||||
DS-ITQ-2 | MWW | Si, Al (1/0.066) | HMI, N-hexadecyl-N'-methyl-DABCO(C16DC1) | — | 150 | OH-: 0.3 | 7 | — | D-BL | [134] | |
LTS-1 | MFI | Si, Ti (50) | [C6H13-N+(CH3)2-C6H12-N+(CH3)2-(CH2)12-O-(p-C6H4)2-O-(CH2)12-N+- (CH3)2-C6H12-N+(CH3)2-C6H13] [Br-]4 (BCph-12-6-6), TPAOH | — | 150 | — | 7 | — | OR-BL | [135] | |
NSHM | MFI | Si | C3N3{[p-C6H4-CH2-N+(CH3)2-C6H12-N+- (CH3)2C6H13] [Br-]2}3 | — | 150 | 12 | 5 | — | V-BL | [136] | |
IPC-1 | UTL | Si (0.69~0.76), B (0.04~0.11), Ge (0.4) | HCl (0.1 mol/L) | — | 175 | OH-: 0.38 | 9~15 | 1.1 | OR-BL | [137] | |
IPC-1SW | TPMA-Cl, TPAOH | 3.9 | |||||||||
IPC-2 | OKO | HNO3 (1 mol/L) | Si(CH3)3- (OCH2CH3)2 | 0.9 | |||||||
IPC-2 | OKO | Si (0.30~1.03) Ge (0.17~0.84) | (6R,10S)-6,10-dimethyl-5-azoniaspiro [4,5] decane hydroxide, HNO3 (1 mol/L) | Diethoxydimethylsilane | 175 | — | 2~23 | — | OR-BL | [142] | |
IPC-4 | PCR | Octylamine | — |
Typical material | Structure code | Framework composition (Si/Ta) | SDA | Swelling or pillared reagent b | Crystallization conditions | Layer Spacing /nm | Order | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
℃ | pH c | d | |||||||||
MCM-22P | MWW | Si, B, Al (92.4/7.1/0.5) | Hexamethyleneimine (HMI) | — | 120 | OH-: 4.3 | 230 | 2.7 | OR-BL | [115] | |
Ti-YNU-1 | MWW | Si, Ti (240) | Piperidine (PI) | — | 170 | — | 5 | 2.7 | OF-BL | [117] | |
PREFER | FER | Si | 4-amino-2,2,6,6-tetra-methylpiperidine | Me2Si(OEt)2 | 170 | H+: 1.0 | 7 | 1.2 | OR-BL | [118] | |
PLS-1 | CDO | Si, K (1/36) | Tetramethylammonium hydroxide (TMAOH) | 150 | — | 10 | 1.1 | ||||
MCM-47 | MWW | Si | Bis(N-methylpyrrolidi-nium) dibromide | 170 | OH-: 0.3 | 6 | 1.2 | ||||
MCM-36 | MWW | Si, B, Al (92.4/7.1/0.5) | HMI | C16TMA-OH, Tetraethylorthosilicate | ≈100 | — | 4 | 2.5 | OF-BL | [119] | |
MCM-22-BETE | MWW | Si, Al (50) | HMI, 1,4-bis(triethoxysilyl)- benzene (BTEB) | Cetyltrimethylammonium hydroxide solution (CTMA) | 135 | 12.5 | 11 | 4.1 | OF-BL | [120] | |
ITQ-2 | MWW | Si, Al | HMI | Hexadecyltrimethylammonium bromide (CTAB), Tetrapropylammonium hydroxide (TPAOH) | 135 | >9 | 11 | ≈4.5 | D-BL | [121] | |
EMM-10 | MWW | Si, Al (14.7) | Bis (N,N,N-trimethyl)-1,5-pentanediaminium dibromide | — | 170 | OH-: 14.4 | 3.3 | >2.6 | OF-BL | [126] | |
PREFER | FER | Si, Al (1/0, 1/0.2) | 4-amino-2,2,6,6-tetra-methylpiperidine | — | 170 | 9 | 15 | 0.7 | OR-BL | [124] | |
MCM-56 | MWW | Si, Al (15) | HMI, Sodium (Na) | — | — | OH-: 0.18 | — | 2.5 | D-BL | [127] | |
Selfpillared pentasil (SPP) | MFI/ MEL | Si, Al (pure, 200, 100) | — | Tetrabutylphosphonium (TBP)-silica, Tetrabutylammonium (TBA)-silica sols | 113 | OH-: 0, 100, 80 | 1.7, 1.3, 2 | — | V-BL | [129] | |
Mul-ZSM-5 | MFI | Si, Al (50) | [C22H45N+(CH3)2C6H12N+(CH3)2C6H13] Br2 (C22-6-6) | — | 150 | OH-: 0.24 | 5 | <2.8 | OR-BL | [20] | |
Uni-ZSM-5 | C22-6-6, no Na | 150 | OH-: 0.24 | 11 | — | D-BL | |||||
Mul-ZSM-5 | MFI | Si | C22-6-6 | — | 140 | OH-: 0.24 | <10 | 4.5 | OR-BL | [125] | |
Uni-ZSM-5 | [C22H45N+(CH3)2C8H16N+(CH3)2C6H13] Br2 (C22-8-6) | — | D-BL | ||||||||
MIT-1 | MWW | Si, Al (20) | C10H15-N+(CH3)2-C4H8-N+(CH3)2-C16H33 (Ada-i-16, i: 4, 5, 6) | — | 160 | OH-: 0.4 | 14~22 | — | D-BL | [130] | |
UJM1-P | MWW | Si, Al (20) | (Ada-4-16) | — | 160 | OH-: 0.2 | 7~14 | — | OR-BL | [131] | |
Mul-ZSM-5 | MFI | Si, Al (50) | C22-6-6 | TPAOH | 150 | OH-: 0.24 | 5 | — | OR-BL | [132] | |
Ml-MWW | MWW | Si, Al (1/0.066) | HMI, [(CH3O)3SiC3H6N- (CH3)2C18H37] Cl (TPOAC) | — | 150 | OH-: 0.3 | >6 | — | OR-BL | [26] | |
SL-MWW | HMI, TPOAC | 150 | OH-: 0.2 | 14 | — | D-BL | |||||
DS-ITQ-2 | MWW | Si, Al (1/0.066) | HMI, N-hexadecyl-N'-methyl-DABCO(C16DC1) | — | 150 | OH-: 0.3 | 7 | — | D-BL | [134] | |
LTS-1 | MFI | Si, Ti (50) | [C6H13-N+(CH3)2-C6H12-N+(CH3)2-(CH2)12-O-(p-C6H4)2-O-(CH2)12-N+- (CH3)2-C6H12-N+(CH3)2-C6H13] [Br-]4 (BCph-12-6-6), TPAOH | — | 150 | — | 7 | — | OR-BL | [135] | |
NSHM | MFI | Si | C3N3{[p-C6H4-CH2-N+(CH3)2-C6H12-N+- (CH3)2C6H13] [Br-]2}3 | — | 150 | 12 | 5 | — | V-BL | [136] | |
IPC-1 | UTL | Si (0.69~0.76), B (0.04~0.11), Ge (0.4) | HCl (0.1 mol/L) | — | 175 | OH-: 0.38 | 9~15 | 1.1 | OR-BL | [137] | |
IPC-1SW | TPMA-Cl, TPAOH | 3.9 | |||||||||
IPC-2 | OKO | HNO3 (1 mol/L) | Si(CH3)3- (OCH2CH3)2 | 0.9 | |||||||
IPC-2 | OKO | Si (0.30~1.03) Ge (0.17~0.84) | (6R,10S)-6,10-dimethyl-5-azoniaspiro [4,5] decane hydroxide, HNO3 (1 mol/L) | Diethoxydimethylsilane | 175 | — | 2~23 | — | OR-BL | [142] | |
IPC-4 | PCR | Octylamine | — |
Typical material | Si/Al a | SBET/ (m2•g-1) | Sext/ (m2•g-1) | Vtot/ (cm3•g-1) | Vmic/ (cm3•g-1) | Total acidic sites/(mmol NH3•g-1) | Brönsted sites/ (mmol•g-1) | Conversion/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
HMCM-22 | 31.5 | 402 | 105 | 0.49 | 0.16 | — | 1.85×1022 b | Methanol, 57 | [162] |
HMCM-56 | 20 | 254 | 144 | 1.20 | 0.06 | — | 6.79×1021 b | Methanol, 59 | |
SL-MWW | 58 | 640 | 446 | 1.21 | 0.09 | 0.65 | 0.464 c | 1-Dodecane, 63 | [26] |
HMCM-22 | 35 | 226 | 100 | 0.20 | 0.12 | 0.53 | — | paddy husk, 61~73 (DOD) | [161] |
ITQ-2 | 35 | 546 | 442 | 0.17 | 0.10 | 0.77 | paddy husk, 66~81 (DOD) | ||
L-ZSM-5 | 33 | 490 | 242 | 0.70 | 0.14 | 0.31 | — | LDPE, 56 | [168] |
Pi-ZSM-5 | 64 | 698 | 498 | 0.61 | 0.12 | 0.17 | LDPE, 55 | ||
Rh0.8Ru0.2/SP-ZSM-5 | 100 | 507 | 310 | — | 0.09 | 0.11 | 0.07 d | Nitrobenzene, 100 | [163] |
NS-25 | 22 | 438 | — | 0.41 | 0.11 | 1.05 | 0.88 d | JP-10, 45 | [171] |
NS-50 | 49 | 405 | 0.39 | 0.12 | 0.62 | 0.25 d | JP-10, 25 | ||
HMCM-22 | 25 | — | 121 | 0.29 | 0.14 | 0.46 | 0.06 e | Benzene with benzyl alcohol, 40 | [130] |
HMCM-56 | 12 | 219 | 0.60 | 0.13 | 0.32 | 0.13 e | Benzene with benzyl alcohol, 44 | ||
MIT-1 | 16 | 513 | 1.01 | 0.13 | 0.33 | 0.21 e | Benzene with benzyl alcohol, 98 | ||
MIT-1 | 45 | 500 | 240 | 0.11 | 0.09 | 0.36 | 0.31 | Benzyl alcohol, >50 | [131] |
UJM-1 | 16 | 500 | 135 | 0.12 | 0.11 | 0.99 | 0.09 | Benzyl alcohol, >95 | |
HMCM-56 | 14 | 474 | 140 | 0.12 | 0.12 | 1.14 | 1.03 | Benzyl alcohol, >90 | |
HMCM-22 | 24 | 375 | 76 | 0.12 | 0.11 | 0.67 | 0.60 | Benzyl alcohol, >60 | |
UJM-1P | 45 | 1063 | 154 | 0.41 | 0.32 | 0.36 | 0.31 | — | |
MCM-22 | 62 | 396 | 89 | 0.34 | 0.14 | 1.12 | 0.05 c | Benzyl alcohol, >40 | [175] |
CT-MCM-36 | 46 | 850 | 300 | 0.78 | 0.24 | 0.57 | 0.12 c | Benzyl alcohol, >90 | |
DP-MCM-36 | 42 | 718 | 299 | 0.65 | 0.17 | 0.59 | 0.10 c | Benzyl alcohol, >90 | |
Ge-MCM-36 | 70 | 767 | 265 | 0.70 | 0.20 | 0.62 | 0.09 c | Benzyl alcohol, >99 | |
MFI-0 | 50 | 448 | 253 | 0.37 | 0.09 | — | 2.4×107 f | Benzyl alcohol, <0.2 (determination of rate constants) | [23] |
MFI-1 | 51 | 462 | 262 | 0.41 | 0.09 | 2.4×107 f | Benzyl alcohol, >0.3 | ||
MFI-2 | 48 | 427 | 227 | 0.41 | 0.09 | 2.5×107 f | Benzyl alcohol, >0.3 | ||
MFI-3 | 47 | 517 | 376 | 0.50 | 0.07 | 2.8×107 f | Benzyl alcohol, >0.7 | ||
MFI-5 | 49 | 494 | 334 | 0.46 | 0.09 | 3.2×107 f | Benzyl alcohol, >0.9 | ||
MFI-8 | 51 | 468 | 294 | 0.45 | 0.08 | 2.4×107 f | Benzyl alcohol, >0.8 | ||
MFI-12 | 54 | 495 | 289 | 0.33 | 0.09 | 2.5×107 f | Benzyl alcohol, >0.4 | ||
MFI-20 | 50 | 492 | 229 | 0.30 | 0.11 | 3.2×107 f | Benzyl alcohol, >0.2 |
Typical material | Si/Al a | SBET/ (m2•g-1) | Sext/ (m2•g-1) | Vtot/ (cm3•g-1) | Vmic/ (cm3•g-1) | Total acidic sites/(mmol NH3•g-1) | Brönsted sites/ (mmol•g-1) | Conversion/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
HMCM-22 | 31.5 | 402 | 105 | 0.49 | 0.16 | — | 1.85×1022 b | Methanol, 57 | [162] |
HMCM-56 | 20 | 254 | 144 | 1.20 | 0.06 | — | 6.79×1021 b | Methanol, 59 | |
SL-MWW | 58 | 640 | 446 | 1.21 | 0.09 | 0.65 | 0.464 c | 1-Dodecane, 63 | [26] |
HMCM-22 | 35 | 226 | 100 | 0.20 | 0.12 | 0.53 | — | paddy husk, 61~73 (DOD) | [161] |
ITQ-2 | 35 | 546 | 442 | 0.17 | 0.10 | 0.77 | paddy husk, 66~81 (DOD) | ||
L-ZSM-5 | 33 | 490 | 242 | 0.70 | 0.14 | 0.31 | — | LDPE, 56 | [168] |
Pi-ZSM-5 | 64 | 698 | 498 | 0.61 | 0.12 | 0.17 | LDPE, 55 | ||
Rh0.8Ru0.2/SP-ZSM-5 | 100 | 507 | 310 | — | 0.09 | 0.11 | 0.07 d | Nitrobenzene, 100 | [163] |
NS-25 | 22 | 438 | — | 0.41 | 0.11 | 1.05 | 0.88 d | JP-10, 45 | [171] |
NS-50 | 49 | 405 | 0.39 | 0.12 | 0.62 | 0.25 d | JP-10, 25 | ||
HMCM-22 | 25 | — | 121 | 0.29 | 0.14 | 0.46 | 0.06 e | Benzene with benzyl alcohol, 40 | [130] |
HMCM-56 | 12 | 219 | 0.60 | 0.13 | 0.32 | 0.13 e | Benzene with benzyl alcohol, 44 | ||
MIT-1 | 16 | 513 | 1.01 | 0.13 | 0.33 | 0.21 e | Benzene with benzyl alcohol, 98 | ||
MIT-1 | 45 | 500 | 240 | 0.11 | 0.09 | 0.36 | 0.31 | Benzyl alcohol, >50 | [131] |
UJM-1 | 16 | 500 | 135 | 0.12 | 0.11 | 0.99 | 0.09 | Benzyl alcohol, >95 | |
HMCM-56 | 14 | 474 | 140 | 0.12 | 0.12 | 1.14 | 1.03 | Benzyl alcohol, >90 | |
HMCM-22 | 24 | 375 | 76 | 0.12 | 0.11 | 0.67 | 0.60 | Benzyl alcohol, >60 | |
UJM-1P | 45 | 1063 | 154 | 0.41 | 0.32 | 0.36 | 0.31 | — | |
MCM-22 | 62 | 396 | 89 | 0.34 | 0.14 | 1.12 | 0.05 c | Benzyl alcohol, >40 | [175] |
CT-MCM-36 | 46 | 850 | 300 | 0.78 | 0.24 | 0.57 | 0.12 c | Benzyl alcohol, >90 | |
DP-MCM-36 | 42 | 718 | 299 | 0.65 | 0.17 | 0.59 | 0.10 c | Benzyl alcohol, >90 | |
Ge-MCM-36 | 70 | 767 | 265 | 0.70 | 0.20 | 0.62 | 0.09 c | Benzyl alcohol, >99 | |
MFI-0 | 50 | 448 | 253 | 0.37 | 0.09 | — | 2.4×107 f | Benzyl alcohol, <0.2 (determination of rate constants) | [23] |
MFI-1 | 51 | 462 | 262 | 0.41 | 0.09 | 2.4×107 f | Benzyl alcohol, >0.3 | ||
MFI-2 | 48 | 427 | 227 | 0.41 | 0.09 | 2.5×107 f | Benzyl alcohol, >0.3 | ||
MFI-3 | 47 | 517 | 376 | 0.50 | 0.07 | 2.8×107 f | Benzyl alcohol, >0.7 | ||
MFI-5 | 49 | 494 | 334 | 0.46 | 0.09 | 3.2×107 f | Benzyl alcohol, >0.9 | ||
MFI-8 | 51 | 468 | 294 | 0.45 | 0.08 | 2.4×107 f | Benzyl alcohol, >0.8 | ||
MFI-12 | 54 | 495 | 289 | 0.33 | 0.09 | 2.5×107 f | Benzyl alcohol, >0.4 | ||
MFI-20 | 50 | 492 | 229 | 0.30 | 0.11 | 3.2×107 f | Benzyl alcohol, >0.2 |
Technology | Capacity/ (104 t/a) | Enterprises | Catalyst | Developers | Year |
---|---|---|---|---|---|
SGEB工艺 | 30 | 中海石油宁波大榭石化公司 | Nanosheet MFI | 中国石油化工股份有限公司上海石油化工研究院、中国石油化工股份有限公司石油化工科学研究院等 | 2016 |
液相法制乙苯 | 32 | 新疆独山子石化公司 | EBC-1 (Layered MWW) | 中国石油化工股份有限公司上海石油化工研究院 | 2006 |
液相法制乙苯 | 84 | 台塑集团台化公司 | EBC-1 | 中国石油化工股份有限公司上海石油化工研究院 | 2017 |
液相法制乙苯 | 50 | 天津大沽化工有限公司 | EBC-1 | 中国石油化工股份有限公司上海石油化工研究院 | 2018 |
S-ACT工艺 | 30 | 中国-沙特天津石化 | Layered MWW | 中国石油化工股份有限公司上海石油化工研究院 | 2010 |
S-MTO | 60 | 中原石化公司 | Nanosheet SAPO-34 | 中国石化集团谢在库院士团队 | 2011 |
360 | 中天合创公司 | Nanosheet SAPO-34 | 2016 |
Technology | Capacity/ (104 t/a) | Enterprises | Catalyst | Developers | Year |
---|---|---|---|---|---|
SGEB工艺 | 30 | 中海石油宁波大榭石化公司 | Nanosheet MFI | 中国石油化工股份有限公司上海石油化工研究院、中国石油化工股份有限公司石油化工科学研究院等 | 2016 |
液相法制乙苯 | 32 | 新疆独山子石化公司 | EBC-1 (Layered MWW) | 中国石油化工股份有限公司上海石油化工研究院 | 2006 |
液相法制乙苯 | 84 | 台塑集团台化公司 | EBC-1 | 中国石油化工股份有限公司上海石油化工研究院 | 2017 |
液相法制乙苯 | 50 | 天津大沽化工有限公司 | EBC-1 | 中国石油化工股份有限公司上海石油化工研究院 | 2018 |
S-ACT工艺 | 30 | 中国-沙特天津石化 | Layered MWW | 中国石油化工股份有限公司上海石油化工研究院 | 2010 |
S-MTO | 60 | 中原石化公司 | Nanosheet SAPO-34 | 中国石化集团谢在库院士团队 | 2011 |
360 | 中天合创公司 | Nanosheet SAPO-34 | 2016 |
[1] |
BP. Statistical Review of World Energy 2021 (70th edition), BP p.l.c., London, 2021, https://www.bp.com/statisticalreview.
|
[2] |
Ma, X. X.; Zhao, Y. K.; Sun, M.; Yao, Q. X. Coal Convers. 2020, 43, 1. (in Chinese)
|
( 马晓迅, 赵阳坤, 孙鸣, 么秋香, 煤炭转化, 2020, 43, 1.)
|
|
[3] |
Zhang, Q.; Yu, J. H.; Croma, A. Adv. Mater. 2020, 32, 2002927.
doi: 10.1002/adma.v32.44 |
[4] |
Zhang, M. T.; Yan, T. T.; Dai, W. L.; Guan, N. J.; Li, L. D. Acta Chim. Sinica 2020, 78, 1404. (in Chinese)
doi: 10.6023/A20080346 |
( 张梦婷, 颜婷婷, 戴卫理, 关乃佳, 李兰冬, 化学学报, 2020, 78, 1404.)
|
|
[5] |
Sumelius, G.In Synthesis of Microporous Materials, Vol. 1, Eds.: Occelli, M. L.; Robson, H. E., Pergamon, New York, 1992, p. 1.
|
[6] |
Colella, C.; Gualtieri, A. F. Micropor. Mesopor. Mater. 2007, 105, 213.
doi: 10.1016/j.micromeso.2007.04.056 |
[7] |
Schlenker, L.; Kühl, G. H.In Proceedings 9th International Zeolite Conference, Eds.: Ballmoos, R. V.; Higgins, J. B.; Treacy, M. M. J., Pergamon, Boston, 1993, p. 3
|
[8] |
Rojo, T.; Luis, M. J.; Lago, J.; Bazan, B.; Pizarro, J. L.; Arriortua, M. I. J. Mater. Chem. 2009, 19, 3793.
|
[9] |
Baerlocher, C.; McCusker, L. B. Database of Zeolite Structures, 2021, http://www.iza-structure.org/databases/.
|
[10] |
Zones, S. I. Micropor. Mesopor. Mater. 2011, 144, 1.
doi: 10.1016/j.micromeso.2011.03.039 |
[11] |
Roth, W. J.; Nachtigall, P.; Morris, R. E.; Čejka, J. Chem. Rev. 2014, 114, 4807.
doi: 10.1021/cr400600f |
[12] |
Přech, J.; Pizarro, P.; Serrano, D. P.; Čejka, J. Chem. Soc. Rev. 2018, 47, 8263.
doi: 10.1039/C8CS00370J |
[13] |
Baerlocher, C.; McCusker, L. B.; Meier, W. M.; Olson, D. H. Atlas of zeolite framework types, Elsevier Science & Technology, Oxford, 2007, p. 405.
|
[14] |
Mahyuddin, M. H.; Shiota, Y.; Yoshizawa, K. Catal. Sci. Technol. 2019, 9, 1744.
doi: 10.1039/C8CY02414F |
[15] |
McCusker, L. B.; Baerlocher, C.In Studies in Surface Science and Catalysis, Vol. 157, Eds.: Ĉejka, J.; Bekkum, H. V., Elsevier Science & Technology, Oxford, 2005, pp. 41-64.
|
[16] |
Bellussi, G.; Carati, A.; Rizzo, C.; Millini, R. Catal. Sci. Technol. 2013, 3, 833.
doi: 10.1039/C2CY20510F |
[17] |
Huo, Q. S.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147.
doi: 10.1021/cm960137h |
[18] |
Xiao, F. A.; Wang, L. F.; Yin, C. Y.; Lin, K. F.; Di, Y.; Li, J. X.; Xu, R. R.; Su, D. S.; Robert, S.; Toshiyuki, Y.; Takashi, T. Angew. Chem. Int. Ed. 2006, 45, 3090.
doi: 10.1002/(ISSN)1521-3773 |
[19] |
Jin, J. S.; Peng, C. Y.; Wang, J. J.; Liu, H. T.; Gao, X. H.; Liu, H. H.; Xu, C. Y. Ind. Eng. Chem. Res. 2014, 53, 3406.
doi: 10.1021/ie403486x |
[20] |
Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Nature 2009, 461, 246.
doi: 10.1038/nature08288 |
[21] |
Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R. J.; Chmelka, S. F.; Ryoo, R. Science 2011, 333, 246.
|
[22] |
Park, W.; Yu, D.; Na, K.; Jelfs, K. E.; Slater, B.; Sakamoto, Y.; Ryoo, R. Chem. Mater. 2011, 23, 5131.
doi: 10.1021/cm201709q |
[23] |
Emdadi, L.; Wu, Y. Q.; Zhu, G. H.; Chang, C. C.; Fan, W.; Pham, T.; Lobo, R. F.; Liu, D. X. Chem. Mater. 2014, 26, 1345.
doi: 10.1021/cm401119d |
[24] |
Emdadi, L.; Tran, D. T.; Schulman, E.; Wei, L.; Shang, W. J.; Chen, H. Y.; Liu, D. X. Micropor. Mesopor. Mater. 2019, 275, 31.
doi: 10.1016/j.micromeso.2018.08.007 |
[25] |
Kim, Y.; Kim, Y.; Ryoo, R. Chem. Mater. 2017, 29, 1752.
doi: 10.1021/acs.chemmater.6b05338 |
[26] |
Chen, J. Q.; Li, Y. Z.; Hao, Q. Q.; Chen, H. Y.; Liu, Z. T.; Dai, C. Y.; Zhang, J. B.; Ma, X. X.; Liu, Z. W. Nat. Sci. Rev. 2020, 8, nwaa236.
doi: 10.1093/nsr/nwaa236 |
[27] |
Yuan, D. L.; Kang, C. Y.; Wang, W. N.; Li, H.; Zhu, X. C.; Wang, Y. D.; Gao, X. H.; Wang, B. J.; Zhao, H. J.; Liu, C. H.; Shen, B. J. Catal. Sci. Technol. 2016, 6, 8364.
doi: 10.1039/C6CY01841F |
[28] |
Verboekend, D.; Pérez-Ramírez, J. Catal. Sci. Technol. 2011, 6, 879.
|
[29] |
Zhang, N. N.; Zhang, Z. Z.; Li, G.; Xu, L.; Lan, T. W.; Gao, T.; Ma, X. X. Chem. Ind. Eng. Prog. 2018, 37, 4616. (in Chinese)
|
( 张妮娜, 张壮壮, 李刚, 徐龙, 兰婷玮, 高婷, 马晓迅, 化工进展, 2018, 37, 4616.)
|
|
[30] |
Ogura, M.; Shinomiya, S.; Tateno, J.; Nara, Y.; Nomura, M.; Kikuchi, E.; Matsukata, M. Appl. Catal. A-Gen. 2001, 219, 33.
doi: 10.1016/S0926-860X(01)00645-7 |
[31] |
Jacobsen, C. J. H.; Madsen, C.; Janssens, T. V. W.; Jacobsen, H. J.; Skibsted, J. Micropor. Mesopor. Mater. 2000, 39, 393.
doi: 10.1016/S1387-1811(00)00215-8 |
[32] |
Chen, H. Y.; Wydra, J.; Zhang, X. Y.; Lee, P. S.; Wang, Z. P.; Fan, Wei.; Tsapatsis, M. J. Am. Chem. Soc. 2011, 133, 12390.
doi: 10.1021/ja2046815 |
[33] |
Lee, P. S.; Hong, D. Y.; Cha, G. Y.; An, H.; Moon, S. Y.; Seong, M.; Chang, B. J.; Lee, J. S.; Kim, J. H. Sep. Purif. Technol. 2019, 210, 29.
doi: 10.1016/j.seppur.2018.07.082 |
[34] |
Sun, J. L.; Bonneau, C.; Cantín, Á.; Croma, A.; Díaz-Cabañas, M. J.; Moliner, M.; Zhang, D. L.; Li, M. R.; Zou, X. D. Nature 2009, 458, 1154.
doi: 10.1038/nature07957 |
[35] |
Wen, J. L.; Zhang, J. H.; Jiang, J. X. Chem. J. Chinese U. 2021, 42, 101. (in Chinese)
|
( 闻嘉丽, 张均豪, 姜久兴, 高等学校化学学报, 2021, 42, 101.)
|
|
[36] |
Corma, A.; Díaz-Cabañas, M. J.; Jiang, J.; Afeworki, M.; Dorset, D. L.; Soled, S. L.; Strohmaier, K. G. Proc. Natl Acad. Sci. 2010, 107, 13997.
doi: 10.1073/pnas.1003009107 |
[37] |
Jiang, J. X.; Jorda, J. L.; Diaz-Cabanas, M. J.; Yu, J. H.; Corma, A. Angew. Chem. Int. Ed. 2010, 49, 4986.
doi: 10.1002/anie.v49:29 |
[38] |
Jiang, J. X.; Jorda, J. L.; Yu, J. H.; Baumes, L. A.; Mugnaioli, E.; Diaz-Cabanas, M. J.; Kolb, U.; Corma, A. Science 2011, 333, 1131.
doi: 10.1126/science.1208652 |
[39] |
Martinez-Franco, R.; Moliner, M.; Yun, Y. F.; Sun, J. L.; Wan, W.; Zou, X. D.; Corma, A. Proc. Natl. Acad. Sci. 2013, 110, 3749.
doi: 10.1073/pnas.1220733110 |
[40] |
Chen, F. J.; Xu, Y.; Du, H. B. Angew. Chem. Int. Ed. 2014, 53, 9596.
|
[41] |
Wheatley, P. S.; Chlubná-Eliášová, P.; Greer, H.; Zhou, W. Z.; Seymour, V. R.; Ashbrook, S. E.; Pinar, A. B.; McCusker, L. B.; Opanasenko, M.; Čejka, J.; Morris, R. E. Angew. Chem. Int. Ed. 2014, 53, 13210.
doi: 10.1002/anie.201407676 |
[42] |
Smeets, S.; Xie, D.; Baerlocher, C.; McCusker, L. B.; Wan, W.; Zou, X. D.; Zones, S. I. Angew. Chem. Int. Ed. 2014, 53, 10398.
doi: 10.1002/anie.201405658 |
[43] |
Willhammar, T.; Burton, A. W.; Yun, Y. F.; Sun, J. L.; Afeworki, M.; Strohmaier, K. G.; Vroman, H.; Zou, X. D. J. Am. Chem. Soc. 2014, 136, 13570.
doi: 10.1021/ja507615b |
[44] |
Yun, Y. F.; Hernández, M.; Wan, W.; Zou, X. D.; Jorda, J. L.; Cantin, A.; Rey, F.; Corma, A. Chem. Commun. 2015, 51, 7602.
doi: 10.1039/C4CC10317C |
[45] |
Jiang, J. X.; Yun, Y. F.; Zou, X. D.; Jorda, J. L.; Corma, A. Chem. Sci. 2015, 6, 480.
doi: 10.1039/C4SC02577F |
[46] |
Jo, C.; Lee, S.; Cho, S. J.; Ryoo, R. Chem. Sci. 2015, 54, 12805.
|
[47] |
Smeets, S.; Berkson, Z. J.; Dan, X.; Zones, S. I.; Zou, X. D.; Hsieh, M. F.; Chmelka, B. F.; McCusker, L. B.; Baerlocher, C. J. Am. Chem. Soc. 2017, 139, 16803.
doi: 10.1021/jacs.7b08810 |
[48] |
Zhang, C. Q.; Kapaca, E.; Li, J. Y.; Liu, Y. L.; Yi, X. F.; Zheng, A.; Zou, X. D.; Jiang, J. X.; Yu, J. H. Angew. Chem. Int. Ed. 2018, 57, 6486.
doi: 10.1002/anie.v57.22 |
[49] |
Yang, B. T.; Jiang, J. G.; Xu, H.; Wu, H. H.; He, M. Y.; Wu, P. Angew. Chem. Int. Ed. 2018, 57, 9515.
doi: 10.1002/anie.201805535 |
[50] |
Zi, W. W.; Gao, Z. H.; Zhang, J.; Zhao, B. X.; Cai, X. S.; Du, H. B.; Chen, F. J. Angew. Chem. Int. Ed. 2020, 59, 3948.
doi: 10.1002/anie.v59.10 |
[51] |
Villaescusa, L. A.; Li, J.; Gao, Z. H.; Sun, J. L.; Camblor, M. A. Angew. Chem. Int. Ed. 2020, 59, 11283.
doi: 10.1002/anie.v59.28 |
[52] |
Gao, Z. H.; Li, J.; Lin, C.; Mayoral, A.; Sun, J. L.; Camblor, M. A. Angew. Chem. Int. Ed. 2021, 60, 3438.
doi: 10.1002/anie.v60.7 |
[53] |
Kapaca, E.; Jiang, J. X.; Cho, J.; Jordá, J. L.; Díaz-Cabañas, M. J.; Zou, X. D.; Corma, A.; Willhammar, T. J. Am. Chem. Soc. 2021, 143, 8713.
doi: 10.1021/jacs.1c02654 |
[54] |
Roth, W. J.; Čejka, J. Catal. Sci. Technol. 2011, 1, 43.
doi: 10.1039/c0cy00027b |
[55] |
Opanasenko, M. V.; Roth, W. J.; Čejka, J. Catal. Sci. Technol. 2016, 6, 2467.
doi: 10.1039/C5CY02079D |
[56] |
Xu, L.; Sun, J. L. Adv. Energy Mater. 2016, 6, 1600441.
doi: 10.1002/aenm.v6.17 |
[57] |
Xu, R. R.; Pang, W, Q.; Huo, Q. S. Molecular Sieve and Porous Material Chemistry (Second Edition), Science Press, Beijing, 2014. (in Chinese)
|
( 徐如人, 庞文琴, 霍启升, 分子筛与多孔材料化学第二版, 科学出版社, 北京, 2014.)
|
|
[58] |
Davis, M. E.; Lobo, R. F. Chem. Mater. 1992, 4, 756.
doi: 10.1021/cm00022a005 |
[59] |
Hu, C. Y.; Yan, W. F.; Xu, R. R. Acta Chim. Sinica 2017, 75, 679. (in Chinese)
doi: 10.6023/A17040169 |
( 胡成玉, 闫文付, 徐如人, 化学学报, 2017, 75, 679.)
|
|
[60] |
Rabenau, A. Angew. Chem. Int. Ed. 1985, 24, 1026.
doi: 10.1002/(ISSN)1521-3773 |
[61] |
Ling, Y.; Zheng, Y. T.; Liu, Y. M.; Wang, Z. D.; Wu, H. H.; Wu, P. Acta Chim. Sinica 2010, 68, 2035. (in Chinese)
|
( 凌云, 郑玉婷, 刘月明, 王振东, 吴海虹, 吴鹏, 化学学报, 2010, 68, 2035.)
|
|
[62] |
Braun, I.; Schulz-Ekloff', G.; Wohrle, D.; Lautenschlager, W. Micropor. Mesopor. Mater. 1998, 23, 79.
doi: 10.1016/S1387-1811(98)00180-2 |
[63] |
Full text database of Science Direct. Elsevier, https://www.sciencedirect.com/.
|
[64] |
Vercammen, J.; Bocus, M.; Neale, S.; Bugaev, A.; Tomkins, P.; Hajek, J.; Van Minnebruggen, S.; Soldatov, A.; Krajnc, A.; Mali, G.; Speybroeck, V. V.; Vos, D. E. D. Nat. Catal. 2020, 3, 1002.
doi: 10.1038/s41929-020-00533-6 |
[65] |
Xu, L. L.; Zhao, R. R.; Zhang, W. P. App. Catal. B 2020, 279, 1002.
|
[66] |
Sun, M. H.; Zhou, J.; Hu, Z. Y.; Chen, L. H.; Li, L. Y.; Wang, Y. D.; Xie, Z. K.; Turner, S.; Van Tendeloo, G.; Hasan, T.; Su, B. L. Matter 2020, 3, 1.
doi: 10.1016/j.matt.2020.06.018 |
[67] |
Leonowicz, M. E.; Roth, W. J.; Kresge, C. T.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
doi: 10.1038/359710a0 |
[68] |
Pan, D.; Wang, Y. M.; Jiang, L. H. Chem. Ind. Eng. Prog. 2016, 35, 2500. (in Chinese)
|
( 潘登, 王亚明, 蒋丽红, 化工进展, 2016, 35, 2500.)
|
|
[69] |
Srivastava, R.; Ryoo, R.; Choi, M.; Venkatesan, C.; Cho, H. S.; Choi, D. H. Nat. Mater. 2006, 5, 718.
doi: 10.1038/nmat1705 |
[70] |
Meier, W. M. Monograph on “Molecular Sieves”, Society of Chemical Industry, London, 1968, pp. 10-27.
|
[71] |
Meier, W. M.; Olson, D. H. Atlas of zeolites and Related Materials. Butterworths, London, 1987, p. 5.
|
[72] |
Smith, J. V. Chem. Rev. 1988, 88, 149.
doi: 10.1021/cr00083a008 |
[73] |
Smith, J. V. Tetrahedral Frameworks of Zeolites, Clathrates Related Materials, Vol. 14A, Springer, Berlin, 2000, p. 266.
|
[74] |
Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier, W. M. Nature 1978, 272, 437.
doi: 10.1038/272437a0 |
[75] |
Palčića, A.; Valtchev, V. Appl. Catal. A-Gen. 2020, 606, 117795.
doi: 10.1016/j.apcata.2020.117795 |
[76] |
Rabo, J. A.; Schoonove Michael, W. R. Appl. Catal. A-Gen. 2001, 222, 261.
doi: 10.1016/S0926-860X(01)00840-7 |
[77] |
Serrano, D. P.; Van, G. R. J. Mater. Chem. 2001, 11, 2391.
doi: 10.1039/b100818h |
[78] |
Kong, X. J.; Bai, Y, H.; Yan, L. J.; Li, F. Fuel 2016, 180, 205.
doi: 10.1016/j.fuel.2016.03.101 |
[79] |
Wei, B. Y.; Jin, L. J.; Wang, D. C.; Shi, H.; Hu, H. Q. Fuel, 2020, 259, 116234.
doi: 10.1016/j.fuel.2019.116234 |
[80] |
Sun, M.; Liu, Y. Q.; Zhang, D.; Ma, M. M.; Yao, Q. X.; Jia, Q.; Ma, X. X. J. China U. Min. Techno. 2019, 48, 647. (in Chinese)
|
( 孙鸣, 刘永琦, 张丹, 马明明, 么秋香, 贾强, 马晓迅, 中国矿业大学学报, 2019, 48, 647.)
|
|
[81] |
Liu, Y. Q.; Yao, Q. X.; Sun, M.; Ma, X. X. J. Anal. Appl. Pyrolysis 2021, 156, 105127.
doi: 10.1016/j.jaap.2021.105127 |
[82] |
Wang, L. Y.; Wang, Q.; Liu, Y. Q.; Yao, Q. X.; Sun, M.; Ma, X. X. Chin. J. Chem. Eng. 2021. https://doi.org/10.1016/j.cjche.2021.09.012
|
[83] |
Yao, Q. X.; Liu, Y. Q.; Zhang, D.; Sun, M.; Ma, X. X. ACS Omega 2021, 6, 4062.
doi: 10.1021/acsomega.0c06123 |
[84] |
Gac, W.; Zawadzki, W.; Słowik, G.; Kuśmierz, M.; Dzwigaj, S. Appl. Surf. Sci. 2021, 564, 150421.
doi: 10.1016/j.apsusc.2021.150421 |
[85] |
Rahman, M. M.; Liu, R. H.; Cai, J. M. Fuel Process. Technol. 2018, 180, 32.
doi: 10.1016/j.fuproc.2018.08.002 |
[86] |
Kostyniuk, A.; Grilc, M.; Likozar, B. Ind. Eng. Chem. Res. 2019, 58, 7690.
doi: 10.1021/acs.iecr.9b01219 |
[87] |
Kostyniuk, A.; Bajec, D.; Likozar, B. Appl. Catal. A-Gen. 2021, 612, 118004.
doi: 10.1016/j.apcata.2021.118004 |
[88] |
Li, F. W.; Ding, S. L.; Wang, Z. H.; Li, Z. X.; Li, L.; Gao, C.; Zhong, Z.; Lin, H. F.; Chen, C. J. Energy Fuels 2018, 32, 5910.
doi: 10.1021/acs.energyfuels.7b04150 |
[89] |
Moreno-Recio, M.; Santamaría-González, J.; Maireles-Torres, P. Chem. Eng. J. 2016, 303, 22.
doi: 10.1016/j.cej.2016.05.120 |
[90] |
Jae, J.; Tompsett, G. A.; Foster, A. J.; Hammond, K. D.; Auerbach, S. M.; Lobo, R. F.; Huber, G. W. J. Catal. 2011, 279, 257.
doi: 10.1016/j.jcat.2011.01.019 |
[91] |
Chen, G. B.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Li, Z. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Angew. Chem. Int. Ed. 2019, 58, 17528.
doi: 10.1002/anie.v58.49 |
[92] |
Zhou, W.; Cheng, K.; Kang, J. C.; Zhou, C.; Subramanian, V.; Zhang, Q. H.; Wang, Y. Chem. Soc. Rev. 2019, 48, 3193.
doi: 10.1039/C8CS00502H |
[93] |
Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R.; Miao, S.; Li, J.; Zhu, Y. F.; Xiao, D.; He, T.; Yang, J. H.; Qi, F.; Fu, Q.; Bao, X. H. Science 2016, 351, 1065.
doi: 10.1126/science.aaf1835 |
[94] |
Jiao, F.; Pan, X. L.; Gong, K.; Chen, Y. X.; Li, G.; Bao, X. H. Angew. Chem. Int. Ed. 2018, 57, 4692.
doi: 10.1002/anie.v57.17 |
[95] |
Liu, X. L.; Zhou, W.; Yang, Y. D.; Cheng, K.; Kang, J. C.; Zhang, L.; Zhang, G. Q.; Min, X. J.; Zhang, Q. H.; Wang, Y. Chem. Sci. 2018, 9, 4708.
doi: 10.1039/C8SC01597J |
[96] |
Zhang, P.; Meng, F. H.; Li, X. J.; Yang, L. L.; Ma, P. C.; Li, Z. Catal. Sci. Technol. 2018, 9, 5577.
doi: 10.1039/C9CY01348B |
[97] |
Santos, V. P.; Pollefeyt, G.; Yancey, D. F.; Ciftci Sandikci, A.; Vanchura, B.; Nieskens, D. L. S.; De Kok-Kleiberg, M.; Kirilin, A.; Chojecki, A.; Malek, A. J. Catal. 2020, 381, 108.
doi: 10.1016/j.jcat.2019.08.027 |
[98] |
Wang, M. H.; Kang, J. C.; Xiong, X. W.; Zhang, F. Y.; Cheng, K.; Zhang, Q. H.; Wang, Y. Catal. Today 2021, 371, 85.
doi: 10.1016/j.cattod.2020.07.076 |
[99] |
Su, J. J.; Liu, C.; Liu, S. L.; Ye, Y. C.; Du, Y. J.; Zhou, H. B.; Liu, S.; Jiao, W. Q.; Zhang, L.; Wang, C. M.; Wang, Y. D.; Xie, Z. K. Cell Rep. Phys. Sci. 2021, 2, 100290.
|
[100] |
Ji, Y. J.; Zhang, B.; Zhang, K.; Xu, L.; Peng, H. G.; Wu, P. Acta Chim. Sinica 2013, 71, 371. (in Chinese)
doi: 10.6023/A12110980 |
( 纪永军, 张斌, 张坤, 徐乐, 彭洪根, 吴鹏, 化学学报, 2013, 71, 371.)
|
|
[101] |
Yang, J. H.; Pan, X. L.; Jiao, F.; Li, J.; Bao, X. H. Chem. Commun. 2017, 53, 11146.
doi: 10.1039/C7CC04768A |
[102] |
Cheng, L. K.; Meng, C.; Yang, T. H.; Li, N.; Liu, D. H. Energy Fuels 2018, 32, 9756.
doi: 10.1021/acs.energyfuels.8b01965 |
[103] |
Xu, Y. F.; Wang, J.; Ma, G. Y.; Bai, J. Y.; Du, Y. X.; Ding, M. Y. Appl. Catal. A-Gen. 2020, 598, 117589.
doi: 10.1016/j.apcata.2020.117589 |
[104] |
Liu, C.; Su, J. J.; Xiao, Y.; Zhou, J.; Liu, S.; Zhou, H. B.; Ye, Y. C.; Lu, Y. Q.; Zhang, Y. D.; Jiao, W. Q.; Zhang, L.; Wang, Y. D.; Wang, C. M.; Zheng, X. S.; Xie, Z. K. Chem Catal. 2021, 1, 1.
|
[105] |
Miao, D. Y.; Pan, X. L.; Jiao, F.; Ji, Y.; Hou, G. J.; Xu, L.; Bao, X. H. Catal. Sci. Technol. 2021, 11, 4521.
doi: 10.1039/D1CY00602A |
[106] |
Mac Dowell, N.; Fennell, P. S.; Shah, N.; Maitland, G. C. Nat. Clim. Change 2017, 7, 243.
doi: 10.1038/nclimate3231 |
[107] |
Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709.
doi: 10.1021/cr4002758 |
[108] |
Li, J.; Yu, T.; Miao, D. Y.; Pan, X. L.; Bao, X. H. Catal. Commun. 2019, 12, 105711.
|
[109] |
Gao, P.; Dang, S. S.; Li, S. G.; Bu, X. N.; Liu, Z. Y.; Qiu, M. H.; Yang, C. G.; Wang, H.; Zhong, L. S.; Han, Y.; Liu, Q.; Wei, W.; Sun, Y. H. ACS Catal. 2018, 8, 571.
doi: 10.1021/acscatal.7b02649 |
[110] |
Liu, X. L.; Wang, M. H.; Yin, H. R.; Hu, J. T.; Cheng, K.; Kang, J. C.; Zhang, Q. H.; Wang, Y. ACS Catal. 2020, 10, 8303.
doi: 10.1021/acscatal.0c01579 |
[111] |
Ni, Y. M.; Chen, Z. Y.; Fu, Y.; Liu, Y.; Zhu, W. L.; Liu, Z. M. Nat. Commun. 2018, 9, 3457.
doi: 10.1038/s41467-018-05880-4 |
[112] |
Dai, C. Y.; Zhao, X.; Hu, B. R.; Zhang, J. X.; Hao, Q. Q.; Chen, H. Y.; Guo, X. W.; Ma, X. X. Ind. Eng. Chem. Res. 2020, 59, 19194.
doi: 10.1021/acs.iecr.0c03598 |
[113] |
Zhang, J. F.; Zhang, M.; Chen, S. Y.; Wang, X. X.; Zhou, Z. L.; Wu, Y. Q.; Zhang, T.; Yang, G. H.; Han, Y. Z.; Tan, Y. S. Chem. Commun. 2019, 5, 973.
|
[114] |
Wei, J.; Yao, R. W.; Ge, Q. J.; Xu, D. Y.; Fang, C. Y.; Zhang, J. X.; Xu, H. Y.; Sun, J. Appl. Catal. B 2021, 283, 119648.
|
[115] |
Leonowicz, M. E.; Lawton, J. A.; Lawton, S. L.; Rubin, M. K. Science 1994, 264, 1910.
|
[116] |
Lawton, S. L.; Fung, A. S.; Kennedy, G. J.; Alemany, L. B.; Chang, C. D.; Hatzikos, G. H.; Lissy, D. N.; Rubin, M. K.; Timken, H. C.; Steuernagel, S.; Woessner, D. E. J. Phys. Chem. 1994, 100, 3788.
|
[117] |
Fan, W. B.; Wu, P.; Namba, S.; Tatsumi, T. Angew. Chem. Int. Ed. 2004, 43, 236.
|
[118] |
Wu, P.; Ruan, J. F.; Wang, L. L.; Wu, L. L.; Wang, Y.; Liu, Y. M.; Fan, W. B.; He, M. Y.; Terasaki, O.; Tatsumi, T. J. Am. Chem. Soc. 2008, 130, 8178.
|
[119] |
Roth, W. J.; Kresge, C. T.; Vartuli, J. C.; Leonowicz, M. E.; Fung, A. S.; Mccullen, S. B. Studies in Surface Science and Catalysis, Vol. 94, Elsevier Science & Technology, Szombathely, Hungary, 1995, p. 301.
|
[120] |
Corma, A.; Díaz, U.; García, T.; Sastre, G.; Velty, A. J. Am. Chem. Soc. 2010, 132, 15011.
|
[121] |
Corma, A.; Pergher, S. B.; Fornes, V.; Maesen, T. L. M.; Buglass, J. G. Nature 1998, 396, 353.
|
[122] |
Varoon, K.; Zhang, X. Y.; Elyassi, B.; Brewer, D. D.; Gettel, M.; Kumar, S.; Lee, J. A.; Maheshwari, S.; Mittal, A.; Sung, C. Y.; Cococcioni, M.; Francis, L. F.; Mccormick, A. V.; Mkhoyan, K. A.; Tsapatsis, M. Science 2011, 333, 72.
|
[123] |
Roth, W. J. Chapter 7-Synthesis of delaminated and pillared zeolitic materials. Studies in Surface Science and Catalysis, 2007, 168, 221.
|
[124] |
Schreyeck, L.; Caullet, P.; Mougenel, J. C.; Guth, J. L.; Marler, B. Micropor. Mater. 1996, 6, 259.
|
[125] |
Park, W.; Yu, D.; Na, K.; Jelfs, K. E.; Slater, B.; Sakamoto, Y.; Ryoo, R. Chem. Mater. 2011, 23, 5131.
|
[126] |
Roth, W. J.; Dorset, D. L.; Kennedy, G. J. Micropor. Mesopor. Mater. 2011, 142, 168.
|
[127] |
Roth, W. J. Stud. Surf. Sci. Catal. 2005, 158, 19.
|
[128] |
Poloij, M.; Thang, H. V.; Rubeš, M.; Eliášová, P.; Čejka, J.; Nachtigall, P. Dalton Trans. 2014, 43, 1443.
|
[129] |
Zhang, X. Y.; Liu, D. X.; Xu, D. D.; Asahina, S.; Cychosz, K. A.; Agrawal, K. V.; Al Wahedi, Y.; Bhan, A.; Al Hashimi, S.; Terasaki, O.; Thommes, M.; Tsapatsis, M. Science 2012, 336, 1684.
|
[130] |
Luo, H. Y.; Michaelis, V. K.; Hodges, S.; Griffin, R. G.; Roman- Leshkov, Y. Chem. Sci. 2015, 6, 6320.
|
[131] |
Grzybek, J.; Roth, W. J.; Gil, B.; Korzeniowska, A.; Mazur, M.; Cejka, J.; Morris, R. E. J. Mater. Chem. A 2019, 7, 7701.
|
[132] |
Emdadi, L.; Wu, Y. Q.; Zhu, G. H.; Chang, C. C.; Fan, W.; Pham, T.; Lobo, R. F.; Liu, D. X. Chem. Mater. 2014, 26, 1345.
|
[133] |
Emdadi, L.; Liu, D. X. J. Mater. Chem. A: Mater. Energy Sust. 2014, 2, 13388.
|
[134] |
Margarit, V. J.; Martínez-Armero, M. E.; Navarro, M. T.; Martínez, C.; Corma, A. Angew. Chem. Int. Ed. 2015, 54, 13724.
|
[135] |
Wang, M. Y.; Wang, X.; You, Q.; Wu, Y. S.; Yang, X.; Chen, H. Y.; Liu, B. Y.; Hao, Q. Q.; Zhang, J. B.; Ma, X. X. Micropor. Mesopor. Mater. 2021, 323, 111207.
|
[136] |
Wang, R. S.; Peng, Z. H.; Wu, P. P.; Lu, J. Z.; Rood, M. J.; Sun, H. M.; Zeng, J. B.; Wang, Y. H.; Yan, Z. F. Chem. Eur. J. 2021, 27, 8694.
|
[137] |
Roth, W. J.; Shvets, O. V.; Shamzhy, M.; Chlubná, P.; Kubů, M.; Nachtigall, P.; Čejka, J. J. Am. Chem. Soc. 2011, 133, 6030.
|
[138] |
Paillaud, J. L.; Harbuzaru, B.; Patarin, J.; Bats, N. Sci. 2004, 304, 990.
|
[139] |
Corma, A.; Diaz-Cabanas, M. J.; Rey, F.; Nicolooulas, S.; Boulahya, K. Chem. Commun. 2004, 12, 1356.
|
[140] |
Xu, L.; Choudhary, M. K.; Muraoka, K.; Chaikittisilp, W.; Wakihara, T.; Rimer, J. D.; Okubo, T. Angew. Chem. Int. Ed. 2019, 58, 14529.
|
[141] |
Schieber, T. A.; Carpi, L.; Diaz-Guilera, A.; Pardalos, P. M.; Masoller, C.; Ravetti, M. G. Nat. Commun. 2017, 8, 13928.
|
[142] |
Roth, W. J.; Nachtigall, P.; Morris, R. E.; Wheatley, P. S.; Seymour, V. R.; Ashbrook, S. E.; Chlubna, P.; Grajciar, L.; Polozij, M.; Zukal, A.; Shvets, O.; Cejka, J. Nat. Chem. 2013, 5, 628.
|
[143] |
Shamzhy, M.; Opanasenko, M.; Tian, Y. Y.; Konysheva, K.; Shvets, O.; Morris, R. E.; Čejka, J. Chem. Mater. 2014, 26, 5789.
|
[144] |
Chlubná-Eliášová, P.; Tian, Y. Y.; Pinar, A. B.; Kubů, M.; Čejka, J.; Morris, R. E. Angew. Chem. Int. Ed. 2014, 53, 7048.
|
[145] |
Wheatley, P. S.; Chlubná-Eliášová, P.; Greer, H.; Zhou, W. Z.; Seymour, V. R.; Dawson, D. M.; Ashbrook, S. E.; Pinar, A. B.; McCusker, L. B.; Opanasenko, M.; Čejka, J.; Morris, R. E. Angew. Chem. Int. Ed. 2014, 53, 13210.
|
[146] |
Eliášová, P.; Opanasenko, M.; Wheatley, P. S.; Shamzhy, M.; Mazur, M.; Nachtigall, P.; Roth, W. J.; Morris, R. E.; Čejka, J. Chem. Mater. 2015, 44, 7177.
|
[147] |
Zhang, J.; Veselý, O.; Tošner, Z.; Mazur, M.; Opanasenko, M.; Čejka, J.; Shamzhy, M. Chem. Mater. 2021, 33, 1228.
|
[148] |
Mazur, M.; Chlubná-Eliášová, P.; Roth, W. J.; Čejka, J. Catal. Today 2014, 227, 37.
|
[149] |
Morris, R. E.; Wormald, P.; Webb, P. B.; Cooper, E. R.; Wheatley, P. S.; Andrews, C. D. Nature 2004, 430, 1012.
|
[150] |
Opanasenko, M.; Parker, W. O.; Shamzhy, M.; Montanari, E.; Bellettato, M.; Mazur, M.; Millini, R.; Čejka, J. J. Am. Chem. Soc. 2014, 136, 2511.
|
[151] |
Mazur, M.; Wheatley, P. S.; Navarro, M.; Roth, W. J.; Polozij, M.; Mayoral, A.; Eliasova, P.; Nachtigall, P.; Cejka, J.; Morris, R. E. Nat. Chem. 2016, 8, 58.
|
[152] |
Opanasenko, M.; Shamzhy, M.; Wang, Y. Z.; Yan, W. F.; Nachtigall, P.; Čejka, J. Angew. Chem. Int. Ed. 2020, 59, 19380.
|
[153] |
Pophale, R.; Cheeseman, P. A.; Deem, M. W. Phys. Chem. Chem. Phys. 2011, 13, 12407.
|
[154] |
Liu, L. C.; Diaz, U.; Arenal, R.; Agostini, G.; Concepcion, P.; Corma, A. Nat. Mater. 2017, 16, 132.
|
[155] |
Zhang, Y. Y.; Kubů, M.; Mazur, M.; Čejka, J. Micropor. Mesopor. Mater. 2019, 279, 364.
|
[156] |
Shamzhy, M.; Gil, B.; Opanasenko, M.; Roth, W. J.; Čejka, J. ACS Catal. 2021, 11, 2366.
|
[157] |
Pérez-Ramírez, J.; Verboekend, D.; Bonilla, A.; Abelló, S. Adv. Funct. Mater. 2009, 19, 3972.
|
[158] |
Josuinkas, F. M.; Quitete, C. P. B.; Ribeiro, N. F. P.; Souza, M. M. V. M. Fuel Process. Technol. 2014, 121, 76.
|
[159] |
Li, Z. K.; Wang, H. T.; Yan, H. L.; Yan, J. C.; Lei, Z. P.; Ren, S. B; Wang, Z. C.; Kang, S. G.; Shui, H. F. Fuel 2021, 287.
|
[160] |
Wang, L.; Chen, J. H.; Watanabe, H.; Xu, Y.; Tamura, M.; Nakagawa, Y.; Tomishige, K. Appl. Catal. B-Environ. 2014, 160-161, 701.
|
[161] |
Naqvi, S. R.; Uemura, Y.; Yusup, S.; Sugiura, Y.; Nishiyama, N. J. Anal. Appl. Pyrol. 2015, 114, 32.
|
[162] |
Naqvi, S. Raza.. Naqvi, M.. Inayat, A.. Blanco-Sanchez, P. J. Anal. Appl. Pyrol. 2021, 155, 105025.
|
[163] |
Wang, N.; Sun, Q. M.; Zhang, T. J.; Mayoral, A.; Li, L.; Zhou, X.; Xu, J.; Zhang, P.; Yu, J. H. J. Am. Chem. Soc. 2021, 143, 6905.
|
[164] |
Wojtaszek-Gurdak, A.; Trejda, M.; Kryszak, D.; Ziolek, M. Micropor. Mesopor. Mater. 2014, 197, 185.
|
[165] |
Hadi, N.; Alizadeh, R.; Niaei, A. J. Ind. Eng. Chem. 2017, 54, 82.
|
[166] |
Hu, S.; Shan, J.; Zhang, Q.; Wang, Y.; Liu, Y. S.; Gong, Y. J.; Wu, Z. J.; Dou, T. Appl. Catal. A-Gen. 2012, 445, 215.
|
[167] |
Kim, Y. J.; Kim, J. C.; Jo, C. B.; Kim, T. W.; Kim, C. U.; Jeong, S. J.; Chae, H. J. Micropor. Mesopor. Mater. 2016, 222, 1.
|
[168] |
Peral, A.; Escola, J. M.; Serrano, D. P.; Prech, J.; Ochoa-Hernandez, C.; Cejka, J. Catal. Sci. Technol. 2016, 6, 2754.
|
[169] |
Aguado, J.; Serrano, D. P.; Romero, M. D.; Escola, J. M. Chem. Commun. 1996, 6, 725.
|
[170] |
Serrano, D. P.; Aguado, J.; Escola, J. M. Ind. Eng. Chem. Res. 2000, 39, 1177.
|
[171] |
Tian, Y. J.; Qiu, Y.; Hou, X.; Wang, L.; Liu, G. Z. Energy Fuels 2017, 31, 11987.
|
[172] |
Xie, W. J.; Fang, W. J.; Xing, Y.; Guo, Y. S.; Lin, R. S. Acta Chim. Sinica 2009, 67, 6. (in Chinese)
|
( 谢文杰, 方文军, 邢燕, 郭永胜, 林瑞森, 化学学报, 2009, 67, 6.)
|
|
[173] |
Thang, H. V.; Vaculík, J.; Přech, J.; Kubů, M.; Čejka, J.; Nachtigall, P.; Bulánek, R.; Grajciar, L. Micropor. Mesopor. Mater. 2019, 282, 121.
|
[174] |
Thibault-Starzyk, F.; Stan, I.; Abelló, S.; Bonilla, A.; Thomas, K.; Fernandez, C.; Gilson, J. P.; Pérez-Ramírez, J. J. Catal. 2009, 264, 11.
|
[175] |
Yuan, M. T.; Zhao, D. Y.; Hao, Q. Q.; Luo, Q. X.; Zhang, J. B.; Chen, H. Y.; Sun, M.; Xu, L.; Ma, X. X. Ind. Eng. Chem. Res. 2020, 59, 16312.
|
[176] |
Cheung, P.; Bhan, A.; Sunley, G. J.; Iglesia, E. Angew. Chem. Int. Ed. 2006, 45, 1617.
|
[177] |
Cheung, P.; Bhan, A.; Sunley, G. J.; Law, D. J.; Iglesia, E. J. Catal. 2007, 245, 110.
|
[178] |
Lakiss, L.; Vicente, A.; Gilson, J. P.; Valtchev, V.; Mintova, S.; Vimont, A.; Bedard, R.; Abdo, S.; Bricker, J. ChemPhysChem 2020, 21, 1873.
|
[179] |
Weitkamp, J. Solid State Ionics 2000, 131, 175.
|
[180] |
Shi, J.; Wang, Y. D.; Yang, W. M.; Tang, Y.; Xie, Z. K. Chem. Soc. Rev. 2015, 44, 8877.
|
[181] |
Jin, S. Q.; Sun, H. M.; Yang, W. M. Chem. J. Chinese U. 2021, 42, 217. (in Chinese)
|
( 金少青, 孙洪敏, 杨为民, 高等学校化学学报, 2021, 42, 217.)
|
|
[182] |
Li, Y. N.; Jin, Z. S.; Yang, W. M. ZL 201110194985.2, 2014. (in Chinese)
|
( 李亚男, 金照生, 杨为民, ZL 201110194985.2, 2014.)
|
|
[183] |
Yang, W. M.; Wang, Z. D.; Sun, H. M.; Zhang, B.; Huan, M. Y.; Shen, Z. H.; Xue, M. W. US 10099935, 2018.
|
[184] |
Liu, J. T. Green Chemical, Metallurgical and Materials Engineering, Chemical Industry Press, Beijing, 2018. (in Chinese)
|
( 刘炯天, 绿色化工、 冶金、材料工程, 化学工业出版社, 北京, 2018)
|
|
[185] |
Liu, H. X.; Xie, Z. K.; Guan, H. B.; Fang, J. D.; Zhao, Y.; Zhang, H. M. ZL 200810043289. X, 2010. (in Chinese)
|
( 刘红星, 谢在库, 管洪波, 方敬东, 赵昱, 张惠明, ZL 200810043289. X, 2010.)
|
[1] | Lingyue Yang, Yunting Li, Chao Shu. Research Progress on Sultine [J]. Acta Chimica Sinica, 2024, 82(2): 171-189. |
[2] | Yi Wan, Jianghua He, Yuetao Zhang. Research Progress in Precision Polymerization of Polar Olefin Monomers by Lewis Pairs★ [J]. Acta Chimica Sinica, 2023, 81(9): 1215-1230. |
[3] | Mei Hong, Jinqiang Gao, Tong Li, Shihe Yang. In-situ Etching Strategy for Manipulation of Hierarchical Zeolite and Its Application★ [J]. Acta Chimica Sinica, 2023, 81(8): 937-948. |
[4] | Shaoyan Gan, Shengyu Zhong, Liting Wang, Lei Shi. Synthesis and Application of Organic Hypervalent Bromine Reagents [J]. Acta Chimica Sinica, 2023, 81(8): 1030-1042. |
[5] | Wenshan Zheng, Guanbin Gao, Hao Deng, Taolei Sun. Room Temperature Synthesis and Near-infrared Fluorescence Performance Optimization of Ag2Se@Ag2S Core-shell Quantum Dots [J]. Acta Chimica Sinica, 2023, 81(7): 763-770. |
[6] | Yandong Zhang, Shoufei Zhu. Perspective for Phosphine Ligands with Cyclopropane Backbone★ [J]. Acta Chimica Sinica, 2023, 81(7): 777-783. |
[7] | Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters [J]. Acta Chimica Sinica, 2023, 81(6): 657-668. |
[8] | Kanbinuer Nuermaimaiti, Chao Wang, Shiwei Luo, Abudu Rexit Abulikemu. Research on Selective Dehalogenation of α,α,α-Trihalogen (Chloro, Bromo) methyl Ketones Under Electrochemical Conditions [J]. Acta Chimica Sinica, 2023, 81(6): 582-587. |
[9] | Wang Jun, Xu Xiaomei, Zhou Jiaolong, Zhao Yanan, Sun Xiuli, Tang Yong, He Sufang, Yang Hongmei. Synthesis of New Sulfur-free and Phosphorus-free Ether-ester and Study on Its Properties As Ashless Friction Modifier [J]. Acta Chimica Sinica, 2023, 81(5): 461-468. |
[10] | Junchang Chen, Mingxing Zhang, Shuao Wang. Research Progress of Synthesis Methods for Crystalline Porous Materials [J]. Acta Chimica Sinica, 2023, 81(2): 146-157. |
[11] | Yang Gao, Xuexin Zhang, Jinsheng Yu, Jian Zhou. Recent Advances in Catalytic Enantioselective Synthesis of α-Chiral Tertiary Azides★ [J]. Acta Chimica Sinica, 2023, 81(11): 1590-1608. |
[12] | Zhiping Chen, Yongle Meng, Jing Lu, Wenwu Zhou, Zhiyuan Yang, Anning Zhou. Preparation of Fe@Si/S-34 Catalysts and Its Catalytic Performance for Syngas to Olefins [J]. Acta Chimica Sinica, 2023, 81(1): 14-19. |
[13] | Xiaochen Wang, Zeyao Ji, Jian Liu, Bingfu Wang, Hui Jin, Lixin Zhang. Advances in Organocatalytic Asymmetric Reactions Involving Thioesters [J]. Acta Chimica Sinica, 2023, 81(1): 64-83. |
[14] | Hongdan Zhang, Xinyu Lan, Peng Cheng. Advances in Hydroxyl Free Radical Assisted Synthesis of Zeolite [J]. Acta Chimica Sinica, 2023, 81(1): 100-110. |
[15] | Zhihao Qi, Fujie Gao, Changkai Zhou, Yu Zeng, Qiang Wu, Lijun Yang, Xizhang Wang, Zheng Hu. Ruthenium Nanoparticles Anchored on Nitrogen-Doped Carbon Nanocages for Fischer-Tropsch Synthesis [J]. Acta Chimica Sinica, 2022, 80(8): 1100-1105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||