Acta Chimica Sinica ›› 2025, Vol. 83 ›› Issue (5): 535-550.DOI: 10.6023/A24120390 Previous Articles    

Review

二氧化碳加氢制低碳烯烃Fe基催化剂研究进展

胡博a, 肖霞a,*(), 王鹏a,b, 束小龙a, 卞梦琪a, 王健捷a, 赵震a,b,*()   

  1. a 沈阳师范大学 化学化工学院 能源与环境催化研究所 沈阳 110034
    b 中国石油大学(北京) 重质油国家重点实验室 北京 102249
  • 投稿日期:2024-12-31 发布日期:2025-04-16
  • 作者简介:

    胡博, 本科生, 就读于沈阳师范大学化学化工学院, 主要从事分子筛多孔材料合成、二氧化碳烷烃耦合转化方面的研究工作.

    肖霞, 博士, 沈阳师范大学化学化工学院副教授, 硕士研究生导师, 主要从事分子筛多孔材料的合成及其能源催化方面的研究工作. 主持国家自然科学基金、辽宁省自然科学基金等各类科研项目7项, 参与科技部重点研发计划、国家自然科学基金重大重点项目、中石油重大科技专项等5项. 已在ACS Catal., Chem. Commun., Micropor. Mesopor. Mat.和中国科学: 化学等国内外学术期刊上发表论文30余篇, 参编《炼油稀土催化》、《化学: 中心科学》和《Heterogeneous Catalysis for Sustainable Energy》著作3部. 荣获辽宁省研究生教学成果奖特等奖、辽宁省高等学校本科教学成果二等奖和沈阳市自然科学学术成果奖等. 入选辽宁省“百千万人才工程”万人层次, 沈阳市中青年科技创新人才支持计划, 沈阳市拔尖人才.

    赵震, 教育部国家级高层次人才; 中国石油大学(北京)教授, 博士生导师; 沈阳师范大学特聘教授、沈阳师范大学化学化工学院院长, 能源与环境催化研究所所长. 中国科协“一带一路”国际联合能源与环境催化研究中心主任; 辽宁省高校重大科技平台“能源与环境催化工程技术研究中心”主任. 现兼任中国化学会催化专业委员会委员; 中国稀土学会常务理事和催化专业委员会副主任; 中国能源学会副会长和能源与环境专业委员会主任等多个学术兼职. 入选国际先进材料协会(IAAM)Fellow、国际VEBLEO学会组织Fellow、教育部“长江学者奖励计划”特聘教授、“新世纪百千万人才”国家级人选、“国务院政府特殊津贴”专家、辽宁杰出科技工作者、辽宁省高校攀登学者、辽宁省普通高等学校本科教学名师、辽宁省教书育人模范、辽宁省学术头雁、辽宁省优秀科技工作者、辽宁省课程思政教学名师、沈阳市十大科技英才、沈阳市优秀专家、沈阳市杰出人才等荣誉称号. 主要从事能源与环境催化、稀土催化、催化新材料等方面的研发工作. 主持科技部重点研发计划项目、863主题(专题)项目课题、国家自然科学基金重大研究计划集成、重点项目、国家自然科学基金重点项目等国家级项目(课题)19项; 省市级各类项目30余项; 已在Nature Commun., PNAS, Angew. Chem. Int. Ed., Energy & Environment. Science, AICHE J., Appl. Catal. B: Environment, ACS Catal., J. Catal.和中国科学: 化学等国内外知名学术期刊上发表SCI论文600余篇, 引用23300多次, H因子81 (Scopus); 2014~2024年连续11年入选爱思唯尔公司公布的中国高被引学者榜单(化学工程与技术). 荣获国际纯粹与应用化学联合会(IUPAC)新材料及其合成杰出贡献奖、湖北省科学技术自然科学奖二等奖、中国稀土科学技术奖一等奖、中国化工学会基础研究成果一等奖、侯德榜化工科技奖创新奖、辽宁省高等学校本科教学成果一等奖、二等奖及辽宁省研究生教学成果奖特等奖等多项教学科研奖励.

  • 基金资助:
    辽宁省自然科学基金面上项目(2024-MS-110); 辽宁省教育厅基本科研项目(LJKMZ20221476); 广西重大专项项目(GUIKEAA24206022); 辽宁省国际科技合作计划项目(2024JH2/102100004); 沈阳市中青年科技创新人才支持计划项目(RC220357)

Advances in Fe-based Catalysts for the Hydrogenation of CO2 to Light Olefins

Bo Hua, Xia Xiaoa,*(), Peng Wanga,b, Xiaolong Shua, Mengqi Biana, Jianjie Wanga, Zhen Zhaoa,b,*()   

  1. a Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
    b State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2024-12-31 Published:2025-04-16
  • Contact: * E-mail: xiaoxiacup@126.com; zhenzhao@cup.edu.cn
  • Supported by:
    Liaoning Provincial Natural Science Foundation General Program(2024-MS-110); Basic Scientific Research Project of Liaoning Provincial Department of Education(LJKMZ20221476); Science and Technology Major Program of Guangxi Province(GUIKEAA24206022); Liaoning Province international science and technology cooperation program project(2024JH2/102100004); Shenyang Young and Middle-aged Scientific and Technological Innovation Talents Support Plan(RC220357)

Carbon dioxide (CO2) is the primary contributor to the greenhouse effect, and its increasing concentration in the atmosphere has become a major driver of global climate change. However, CO2 is also the most inexpensive and abundant carbon resource in nature. The hydrogenation of CO2 to produce high-value-added chemicals such as light olefins not only enables the utilization of CO2 as a resource but also reduces the reliance on non-renewable resources like petroleum for light olefins production. This has profound implications for global energy security and sustainable development. This article reviews the research progress and reaction mechanisms (CO2-FTS pathway and CO2-MeOH pathway) of iron-based catalysts for the hydrogenation of CO2 to produce light olefins. This article comprehensively reviews recent advances in iron-based catalysts for CO2 hydrogenation to light olefins, with particular emphasis on the CO2-FTS and CO2-MeOH pathways: the surface carbide mechanism, the surface enol mechanism, and the CO insertion mechanism. The active sites and structural evolution of Fe-based catalysts during the reaction process are discussed. Based on this, the main factor leading to the deactivation of Fe-based catalysts is identified as the irreversible oxidation of the active phase (Fe5C2) to the inactive phase (Fe3O4). The article emphasizes the effects of bimetallic active components (Fe-Co, Fe-Ni, Fe-Ru bimetallic catalysts), supports (oxides, metal-organic frameworks, carbon materials, zeolites), promoters (alkali and alkaline earth metals, transition metals and their oxides, rare earth metals, biological promoters), and catalyst preparation methods and conditions on the activity and selectivity of Fe-based catalysts in the CO2-FTS pathway. The compositional and structural factors influencing the performance of Fe-based catalysts are analyzed. Additionally, representative bifunctional catalysts in both the CO2-FTS and CO2-MeOH pathways are introduced, with examples illustrating how bifunctional catalysts can accelerate the reaction process and reduce energy consumption. Finally, we provide an outlook on the research directions of iron-based catalysts for CO2 hydrogenation to light olefins, proposing potential future research trends and challenges, aiming to offer references and insights for researchers in this field.

Key words: carbon dioxide, hydrogenation, light olefins, Fe-based catalysts, catalytic activity, selectivity