[1] Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J. Pure Appl. Chem. 2011, 83, 1619.
[2] Desiraju, G. R. Angew. Chem., Int. Ed. 2011, 50, 52.
[3] Latimer, W. M.; Rodebush, W. H. J. Am. Chem. Soc. 1920, 42, 1419.
[4] Robertson, J. M. Nature 1935, 136, 755.
[5] Taylor, R.; Kennard, O. J. Am. Chem. Soc. 1982, 104, 5063.
[6] Katz, B. A.; Spencer, J. R.; Elrod, K.; Luong, C.; Mackman, R. L.; Rice, M.; Sprengeler, P. A.; Allen, D.; Janc, J. J. Am. Chem. Soc. 2002, 124, 11657.
[7] (a) Bondar, A. N.; White, S. H. BBA-Biomembranes 2012, 1818, 942.
(b) Zhang, J.; Chen, P. C.; Yuan, B. K.; Ji, W.; Cheng, Z. H.; Qiu, X. H. Science 2013, 342, 611.
[8] For the recent works on H-bonding interaction from Chinese research group:(a) Wang, M.; Cheng, C. Q.; Song, J. T.; Wang, J.; Zhou, X. G.; Xiang, H. F.; Liu, J. Chin. J. Chem. 2018, 36, 698.
(b) Zhu, X. W.; Cui, X. Y.; Cai, W. S.; Shao, X. G. Acta Chim. Sinica 2018, 76, 298(in Chinese). (朱雪薇, 崔晓宇, 蔡文生, 邵学广, 化学学报, 2018, 76, 298.).
(c) Sun, G. J.; Nie, C. B.; Zhao, X.; Li, Z. T. Chin. J. Org. Chem. 2017, 37, 1757(in Chinese). (孙广军, 聂承斌, 赵新, 黎占亭, 有机化学, 2017, 37, 1757.)
[9] Desiraju, G. R. Acc. Chem. Res. 1991, 24, 290.
[10] Jeffrey, G. A. Cryst. Rev. 1995, 4, 213.
[11] For a review on H-bond donor catalysis, see:Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713. For bifucntional catalysis with H-bond donors, see amide based organocatalysts:(a) Liu, X. H.; Lin, L. L.; Feng, X. M. Chem. Commun. 2009, 41, 6145; with enamine catalysis:(b) Kano, T.; Maruoka, K. Chem. Commun. 2008, 43, 5465; with tertiary phosphine catalysis:(c) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005;
(d) Xu, L. W. ChemCatChem 2013, 5, 2775;
(e) Wang, S. X.; Han, X. Y.; Zhong, F. R.; Wang, Y. Q.; Lu, Y. X. Synlett 2011, 19, 2766; with NHCs catalysis:(f) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314;
(g) Sun, L. H.; Liang, Z. Q.; Jia, W. Q.; Ye, S. Angew. Chem., Int. Ed., 2013, 52, 5803;
(h) Lv, H.; Jia, W. Q.; Sun, L. H.; Ye, S. Angew. Chem., Int. Ed. 2013, 52, 8607; with PTC catalysis:(i) Novacek, J.; Waser, M. Eur. J. Org. Chem. 2013, 4, 637;
(j) Shirakawa, S.; Maruoka, K. Tetrahedron Lett. 2014, 55, 3833; with metal catalysis:(k) Song, J.; Guo, C.; Chen, P. H.; Yu, J.; Luo, S. W.; Gong, L. Z. Chem. Eur. J. 2011, 17, 7786;
(l) Lang, K.; Park, J.; Hong, S. Angew. Chem., Int. Ed. 2012, 51, 1620. with phosphoramide:(m) Ding, M.; Zhou, F.; Liu, Y. L.; Wang, C. H.; Zhao, X. L.; Zhou, J. Chem. Sci. 2011, 2, 2035.
(n) Gao, W. M.; Yu, J. S.; Zhao, Y. L.; Liu, Y. L.; Zhou, F.; Wu, H. H.; Zhou, J. Chem. Commun. 2014, 50, 15179.
[12] O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
[13] Howard, J. A. K.; Hoy, V. J.; O'Hagan, D.; Smith, G. T. Tetrahedron 1996, 52, 12613.
[14] Pauling, L. The Nature of the Chemical Bond, Cornell University Press, Ithaca, NY, 1939, p. 28.
[15] Dunitz, J. D.; Taylor, R. Chem. Eur. J. 1997, 3, 89.
[16] Shimoni, L.; Glusker, J. P. Struct. Chem. 1994, 5, 383.
[17] Thalladi, V. R.; Weiss, H. C.; Bla1ser, D.; Boese, R.; Nangia, A.; Desiraju, G. R. J. Am. Chem. Soc. 1998, 120, 8702.
[18] Thakur, T. S.; Kirchner, M. T.; Bläser, D.; Boese, R.; Desiraju, G. R. CrystEngComm 2010, 12, 2079.
[19] Anzahaee, M. Y.; Watts, J. K.; Alla, N. R.; Nicholson, A. W.; Damha, M. J. J. Am. Chem. Soc. 2011, 133, 728.
[20] Schneider, H. J. Chem. Sci. 2012, 3, 1381.
[21] Zhao, X.; Wang, X. Z.; Jiang, X. K.; Chen, Y. Q.; Li, Z. T.; Chen, G. J. J. Am. Chem. Soc. 2003, 125, 15128.
[22] Liu, Y. L.; Shi, T. D.; Zhou, F.; Zhao, X. L.; Wang, X.; Zhou, J. Org. Lett. 2011, 13, 3826.
[23] (a) Pesenti, C.; Viani, F. ChemBioChem 2004, 5, 590.
(b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(d) Wang, J.; Liu, H. Chin. J. Org. Chem. 2011, 31, 1785(in Chinese). (王江, 柳红, 有机化学, 2011, 31, 1785.)
(e) Ojima, I. J. Org. Chem. 2014, 44, 6358.
(f) Liu, Y. L.; Yu, J. S.; Zhou, J. Asian J. Org. Chem. 2013, 2, 194.
(g) Lin, J. H.; Xiao, J. C. Tetrahedron Lett. 2014, 55, 6147.
(h) Ni, C. F.; Zhu, L. G.; Hu, J. B. Acta Chim. Sinica 2015, 73, 90(in Chinese). (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.)
(i) Champagne, P. A.; Desroches, J.; Hamel, J. D.; Vandamme, M.; Paquin, J. F. Chem. Rev. 2015, 115, 9073.
(j) Zhang, J.; Jin, C. F.; Zhang, Y. J. Chin. J. Org. Chem. 2014, 34, 662(in Chinese). (张霁, 金传飞, 张英俊, 有机化学, 2014, 34, 662.)
(k) Swallow, S. Progress in Medicinal Chemistry 2015, 54, 65.
(l) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
(m) Wang, G. M.; Zhu, Z. D.; Chen, Z. Q.; Xu, Z. J.; Zhu, W. L. Acta Pharmaceutica Sinica 2018, 53, 701(in Chinese). (王桂敏, 朱正诞, 陈照强, 徐志建, 朱维良, 药学学报, 2018, 53, 701.)
(n) Ni, C. F.; Hu, J. B. Chem. Soc. Rev. 2016, 45, 5441.
(o) Cahard, D.; Bizet, V. Chem. Soc. Rev. 2014, 43, 135.
(p) Fustero, S.; Fuentes, A. S.; Barrio, P.; Haufe, G. Chem. Rev. 2015, 115, 871.
[24] Champagne, P. A.; Desroches, J.; Paquin, J. F. Synthesis 2014, 47, 306.
[25] Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012.
[26] Jin, L. M.; Xu, X.; Lu, H. J.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2013, 52, 5309.
[27] Yuan, H. N.; Wang, S.; Nie, J.; Meng, W.; Yao, Q.; Ma, J. A. Angew. Chem., Int. Ed. 2013, 52, 3869.
[28] Lee, K. A.; Silverio, D. L.; Torker, S.; Robbins, D. W.; Haeffner, F.; Mei, F. W.; Hoveyda, A. H. Nat. Chem. 2016, 8, 768.
[29] (a) Liu, Y. L.; Zeng, X. P.; Zhou, J. Chem. Asian J. 2012, 7, 1759.
(b) Liu, H. X.; Tao, Z.; Xie, Q.; Zhou, J.; Wang, X. Comput. Theor. Chem. 2018, 1142, 57.
(c) Liu, Y. L.; Zhou, F.; Cao, J. J.; Ji, C. B.; Ding, M.; Zhou, J. Org. Biomol. Chem. 2010, 8, 3847.
(d) Ji, C. B.; Cao, Z. Y.; Wang, X.; Wu, D. Y.; Zhou, J. Chem. Asian J. 2013, 8, 877.
[30] For the related proton-transfer process, see:(a) Xia, Y. Z.; Liang, Y.; Chen, Y. Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y. H.; Yu, Z. X. J. Am. Chem. Soc. 2007, 129, 3470.
(b) Shi, F. Q.; Li, X.; Xia, Y. Z.; Zhang, L. M.; Yu, Z. X. J. Am. Chem. Soc. 2007, 129, 15503.
(c) Li, X.; Ye, S. Y.; He, C.; Yu, Z. X. Eur. J. Org. Chem. 2008, 25, 4296.
[31] Champagne, P. A.; Pomarole, J.; Thérien, M. È.; Benhassine, Y.; Beaulieu, S.; Legault, C. Y.; Paquin, J. F. Org. Lett. 2013, 15, 2210.
[32] Champagne, P. A.; Benhassine, Y.; Desroches, J.; Paquin, J. F. Angew. Chem., Int. Ed. 2014, 53, 13835.
[33] Rosenberg, R. E. J. Phys. Chem. A 2012, 116, 10842.
[34] Dalvit, C.; Invernizzi, C.; Vulpetti, A. Chem. Eur. J. 2014, 20, 11058.
[35] For our efforts in selective fluoroalkylation using fluorinated enol silyl ethers, see:(a) Liu, Y. L.; Zhou, J. Chem. Commun. 2012, 48, 1919.
(b) Liu, Y. L.; Zhou, J. Acta Chim. Sinica 2012, 70, 1451(in Chinese). (刘运林, 周剑, 化学学报, 2012, 70, 1451.)
(c) Liu, Y. L.; Liao, F. M.; Niu, Y. F.; Zhao, X. L.; Zhou, J. Org. Chem. Front. 2014, 1, 742.
(d) Liao, F. M.; Liu, Y. L.; Yu, J. S.; Zhou, F.; Zhou, J. Org. Biomol. Chem. 2015, 13, 8906.
(e) Yu, J. S.; Zhou, J. Org. Biomol. Chem. 2015, 13, 10968.
(f) Yu, J. S.; Liao, F. M.; Gao, W. M.; Liao, K.; Zuo, R. L.; Zhou, J. Angew. Chem., Int. Ed. 2015, 54, 7381.
(g) Yu, J. S.; Zhou, J. Org. Chem. Front. 2016, 3, 298.
(h) Zeng, X. P.; Zhou, J. J. Am. Chem. Soc. 2016, 138, 8730.
(i) Liao, F. M.; Cao, Z. Y.; Yu, J. S.; Zhou, J. Angew. Chem., Int. Ed. 2017, 56, 2459.
(j) Hu, X. S.; Du, Y.; Yu, J. S.; Liao, F. M.; Ding, P. G.; Zhou, J. Synlett 2017, 28, 2194.
(k) Liao, F. M.; Gao, X. T.; Hu, X. S.; Xie, S. L.; Yu, J. S.; Zhou, J. Sci. Bull. 2017, 62, 1504.
(l) Liao, F. M.; Du, Y.; Zhou, F.; Zhou, J. Acta Chim. Sinica 2018, 76, DOI:10.6023/A18060238(in Chinese). (廖富民, 杜溢, 周锋, 周剑, 化学学报, 2018, 76, DOI:10.6023/A18060238).
[36] Yu, J. S.; Liu, Y. L.; Tang, J.; Wang, X.; Zhou, J. Angew. Chem., Int. Ed. 2014, 53, 9512.
[37] For the use of chiral Lewis base to activate silyl reagents, see:(a) Tian, S. K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195.
(b) Tian, S. K.; Hong, R.; Deng, L. J. Am. Chem. Soc. 2003, 125, 9900.
(c) Fuerst, D. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 8964.
(d) Wang, J.; Hu, X. L.; Jiang, J.; Gou, S. H.; Huang, X.; Liu, X. H.; Feng, X. M. Angew. Chem., Int. Ed. 2007, 46, 8468.
(e) Wang, J.; Wang, W. T.; Li, W.; Hu, X. L.; Shen, K.; Tan, C.; Liu, X. H.; Feng, X. M. Chem. Eur. J. 2009, 15, 11642.
(f) Liu, Y. L.; Zhou, J. Chem. Commun. 2013, 49, 4421.
(g) Zhao, Y. L.; Cao, Z. Y.; Zeng, X. P.; Shi, J. M.; Yu, Y. H.; Zhou, J. Chem. Commun. 2016, 52, 3943. For a review:Liu, Y. L.; Zhou, J. Synthesis 2015, 47, 1210.
[38] Aronoff, M. R.; Gold, B.; Raines, R. T. Tetrahedron Lett. 2016, 57, 2347.
[39] Aronoff, M. R.; Gold, B.; Raines, R. T. Org. Lett. 2016, 18, 1538.
[40] Lou, H. Q.; Wang, Y. T.; Jin, E. Z.; Lin, X. F. J. Org. Chem. 2016, 81, 2019.
[41] Liu, Y. B.; Hu, L. R.; Chen, H.; Du, H. F. Chem. Eur. J. 2015, 21, 3495.
[42] (a) Wang, X. M.; Han, Z. B.; Wang, Z.; Ding, K. L. Angew. Chem., Int. Ed. 2012, 51, 936.
(b) Wang, X. M.; Meng, F. Y.; Wang, Y.; Han, Z. B.; Chen, Y. J.; Liu, L.; Wang, Z.; Ding, K. L. Angew. Chem., Int. Ed. 2012, 51, 9276.
[43] (a) Cao, Z. Y.; Wang, X. M.; Tan, C.; Zhao, X. L.; Zhou, J.; Ding, K. L. J. Am. Chem. Soc. 2013, 135, 8197. Also see:(b) Cao, Z. Y.; Zhou, F.; Zhou, J. Acc. Chem. Res. 2018, 61, 1443.
(c) Cao, Z. Y.; Zhou, J. Org. Chem. Front. 2015, 2, 849.
[44] Cao, Z. Y.; Wang, W. M.; Liao, K.; Wang, X.; Zhou, J.; Ma, J. Org. Chem. Front. 2018, 5, 2960.
[45] We also reported a Hg-catalyzed cyclopropanation of diazooxindoles with alkenes, and found that the N-methyl group of diazooxindole had no negative influence on enantioselectivity, possibly because the reaction solvent is not fluorinated solvents, see:Cao, Z. Y.; Zhou, F.; Yu, Y. H.; Zhou, J. Org. Lett. 2013, 15, 42.
[46] (a) Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2007, 129, 10646.
(b) van Zeist, W. J.; Bickelhaupt, F. M. Org. Biomol. Chem. 2010, 8, 3118.
(c) Bickelhaupt, F. M.; Houk, K. N. Angew. Chem., Int. Ed. 2017, 56, 10070. |