Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (4): 443-458.DOI: 10.6023/A20100475 Previous Articles Next Articles
Review
吕玉苗a, 陈伟a,b, 王艳磊a, 霍锋a, 董依慧a, 魏莉b,*(), 何宏艳a,*()
投稿日期:
2020-10-15
发布日期:
2020-11-24
通讯作者:
魏莉, 何宏艳
作者简介:
吕玉苗, 女, 助理研究员, 主要从事离子液体表界面结构、性质及应用研究. 2017年获得中国科学院物理研究所和香港城市大学博士学位, 同年加入中国科学院过程工程研究所从事助研工作, 发表SCI论文11篇, 主持国家自然科学基金青年科学基金1项, 参与国家自然科学基金委重大项目1项. |
陈伟, 男, 大连工业大学轻工与化学工程学院在读硕士研究生, 中国科学院过程工程研究所联合培养硕士, 研究方向为离子液体二维结构在固体表界面的结构及性质. |
魏莉, 女, 副教授, 硕士生导师. 2004年获得大连理工大学应用化学专业博士学位. 主要从事以离子液体为基质的有机催化、生物基材料合成, 离子液体电池等研究. 主持辽宁省教育厅项目1项, 辽宁省科技厅项目1项, 参加国家“973”子课题项目1项, 国家自然科学基金项目1项, 教育部重点项目1项, 省级项目4项, 市级3项, 发表论文20余篇. |
何宏艳, 女, 研究员, 博士生导师, 国家自然科学基金优秀青年基金获得者. 主要从事界面离子液体结构与功能、离子液体特殊氢键与反应性能、离子液体催化木质素/CO2转化等方向的研究工作. 相关研究成果在Chem、Small、Chem. Eng. Sci.、Green Chem.、PCCP等期刊发表SCI论文80余篇, 申请发明专利17项, 获授权6项. 主持国家自然科学基金项目、北京市基金和中科院基金等多项. 获侯德榜化工技术青年奖、中国化工学会离子液体专委会青年创新奖、中科院科技促进发展奖及中国石油和化学工业协会科学技术奖等多项. 2017年入选中科院青年创新促进会. |
基金资助:
Yumiao Lua, Wei Chena,b, Yanlei Wanga, Feng Huoa, Yihui Donga, Li Weib,*(), Hongyan Hea,*()
Received:
2020-10-15
Published:
2020-11-24
Contact:
Li Wei, Hongyan He
About author:
Supported by:
Share
Yumiao Lu, Wei Chen, Yanlei Wang, Feng Huo, Yihui Dong, Li Wei, Hongyan He. Research Progress on the Preparation and Properties of Two Dimensional Structure of Ionic Liquids[J]. Acta Chimica Sinica, 2021, 79(4): 443-458.
离子液体 | 基底 | 溶剂a | 方法 | 参考文献 |
---|---|---|---|---|
[Emim][NTFI] | 云母 | — | 润湿法 | [ |
[Emim][FAP] | 氢化的类金刚石膜/Si | Vertrel XF (2,3-二氢十氟戊烷) | 浸涂法 | [ |
[Pmim]Br | 羟基化Si(100) | C2H5OH | 浸涂法 | [ |
[Pmim]CO3 | 羟基化Si(100) | C2H5OH | 浸涂法 | [ |
[Pmim]Cl | 羟基化Si(100) | C2H5OH | 浸涂法 | [ |
[Pmim] SO3 | 羟基化Si(100) | C2H5OH | 浸涂法 | [ |
[Bmim][FAP] | 氢化的类金刚石膜/Si | Vertrel XF | 浸涂法 | [ |
[Bmim][PF6] | 云母 | CH3OH | 滴涂法 | [ |
氧化Si(100) | (CH3)2CHOH | 浸涂法 | [ | |
Si(100) | (CH3)2CHOH | 浸涂法 | [ | |
羟基化/氨基化Si(100) | CH3COCH3 | 浸涂法 | [ | |
HOPG | CH3OH | 旋涂法 | [ | |
Si(100) | CH3COCH3 | 浸涂法 | [ | |
羟基化Si(100) | CH3COCH3 | 浸涂法 | [ | |
[Bmim][NTFI] | SiO2/Si(110)/云母/HOPG | CH3OH | 滴涂法 | [ |
Si/SiO2/MgO/ 云母/TiO2/NaCl | CH3OH/C2H5OH/CHCl3 | 滴涂法 | [ | |
云母 | — | 润湿法 | [ | |
氧化Si(110)/SiO2 | CH3OH | 滴涂法 | [ | |
羟基化SiO2 | CH3OH | 旋涂法 | [ | |
羟基化SiO2 | CH3OH | 旋涂法 | [ | |
[Bmim][BF4] | 羟基化/氨基化Si(100) | CH3COCH3 | 浸涂法 | [ |
Si(100) | CH3COCH3 | 浸涂法 | [ | |
Si(100) | CH3COCH3 | 浸涂法 | [ | |
[Bmim][OctSO4] | 氧化Si(100) | (CH3)2CHOH | 浸涂法 | [ |
[Bmim][Apc] | 羟基化/氨基化Si(100) | CH3COCH3 | 浸涂法 | [ |
[Bmim][ClO4] | Si(100) | CH3COCH3 | 浸涂法 | [ |
[Bmim][NO3] | Si(100) | CH3COCH3 | 浸涂法 | [ |
[Hmim][NTFI] | 云母 | — | 润湿法 | [ |
羟基化SiO2 | CH3OH | 旋涂法 | [ | |
[Hmim][FAP] | 氢化的类金刚石膜/Si | Vertrel XF | 浸涂法 | [ |
[Omim][BF4] | Al | C2H5OH | 旋涂法 | [ |
[Dmim][NTFI] | 羟基化SiO2 | CH3OH | 旋涂法 | [ |
[Dmim][PF6] | 羟基化Si(100) | CH3COCH3 | 浸涂法 | [ |
[BPtmSiIm][BMdB] | 羟基化Si | CH3COCH3 | 旋涂法 | [ |
硫醇端基IL | Au | C2H5OH | 浸入法 | [ |
巯基IL | Au | C2H5OH | 浸入法 | [ |
咪唑IL-COOH | 氨基化Si(100) | CH3COCH3 | 浸涂法 | [ |
咪唑磷酸盐IL | 羟基化Si(100) | CH3COCH3 | 浸涂法 | [ |
羟乙基IL | Si(100) | CH3COCH3 | 浸涂法 | [ |
双阳离子IL | Si(100) | (CH3)2CHOH | 浸涂法 | [ |
[AEImi]Cl | 羟基化Si(100) | C2H5OH | 浸涂法 | [ |
[MOEDEA][FAP] | 氢化的类金刚石膜/Si | Vertrel XF | 浸涂法 | [ |
[AHIm][PF6] | 羟基/乙烯基/氢化/甲基化Si | CH2Cl2 | 旋涂法 | [ |
[HEHIm][PF6] | 羟基/乙烯基/氢化/甲基化Si | CH2Cl2 | 旋涂法 | [ |
[P4446][BF4] | Si(100) | CH3COCH3 | 浸涂法 | [ |
[BPy][BF4] | Si(100) | CH3COCH3 | 浸涂法 | [ |
离子液体 | 基底 | 溶剂a | 方法 | 参考文献 |
---|---|---|---|---|
[Emim][NTFI] | 云母 | — | 润湿法 | [ |
[Emim][FAP] | 氢化的类金刚石膜/Si | Vertrel XF (2,3-二氢十氟戊烷) | 浸涂法 | [ |
[Pmim]Br | 羟基化Si(100) | C2H5OH | 浸涂法 | [ |
[Pmim]CO3 | 羟基化Si(100) | C2H5OH | 浸涂法 | [ |
[Pmim]Cl | 羟基化Si(100) | C2H5OH | 浸涂法 | [ |
[Pmim] SO3 | 羟基化Si(100) | C2H5OH | 浸涂法 | [ |
[Bmim][FAP] | 氢化的类金刚石膜/Si | Vertrel XF | 浸涂法 | [ |
[Bmim][PF6] | 云母 | CH3OH | 滴涂法 | [ |
氧化Si(100) | (CH3)2CHOH | 浸涂法 | [ | |
Si(100) | (CH3)2CHOH | 浸涂法 | [ | |
羟基化/氨基化Si(100) | CH3COCH3 | 浸涂法 | [ | |
HOPG | CH3OH | 旋涂法 | [ | |
Si(100) | CH3COCH3 | 浸涂法 | [ | |
羟基化Si(100) | CH3COCH3 | 浸涂法 | [ | |
[Bmim][NTFI] | SiO2/Si(110)/云母/HOPG | CH3OH | 滴涂法 | [ |
Si/SiO2/MgO/ 云母/TiO2/NaCl | CH3OH/C2H5OH/CHCl3 | 滴涂法 | [ | |
云母 | — | 润湿法 | [ | |
氧化Si(110)/SiO2 | CH3OH | 滴涂法 | [ | |
羟基化SiO2 | CH3OH | 旋涂法 | [ | |
羟基化SiO2 | CH3OH | 旋涂法 | [ | |
[Bmim][BF4] | 羟基化/氨基化Si(100) | CH3COCH3 | 浸涂法 | [ |
Si(100) | CH3COCH3 | 浸涂法 | [ | |
Si(100) | CH3COCH3 | 浸涂法 | [ | |
[Bmim][OctSO4] | 氧化Si(100) | (CH3)2CHOH | 浸涂法 | [ |
[Bmim][Apc] | 羟基化/氨基化Si(100) | CH3COCH3 | 浸涂法 | [ |
[Bmim][ClO4] | Si(100) | CH3COCH3 | 浸涂法 | [ |
[Bmim][NO3] | Si(100) | CH3COCH3 | 浸涂法 | [ |
[Hmim][NTFI] | 云母 | — | 润湿法 | [ |
羟基化SiO2 | CH3OH | 旋涂法 | [ | |
[Hmim][FAP] | 氢化的类金刚石膜/Si | Vertrel XF | 浸涂法 | [ |
[Omim][BF4] | Al | C2H5OH | 旋涂法 | [ |
[Dmim][NTFI] | 羟基化SiO2 | CH3OH | 旋涂法 | [ |
[Dmim][PF6] | 羟基化Si(100) | CH3COCH3 | 浸涂法 | [ |
[BPtmSiIm][BMdB] | 羟基化Si | CH3COCH3 | 旋涂法 | [ |
硫醇端基IL | Au | C2H5OH | 浸入法 | [ |
巯基IL | Au | C2H5OH | 浸入法 | [ |
咪唑IL-COOH | 氨基化Si(100) | CH3COCH3 | 浸涂法 | [ |
咪唑磷酸盐IL | 羟基化Si(100) | CH3COCH3 | 浸涂法 | [ |
羟乙基IL | Si(100) | CH3COCH3 | 浸涂法 | [ |
双阳离子IL | Si(100) | (CH3)2CHOH | 浸涂法 | [ |
[AEImi]Cl | 羟基化Si(100) | C2H5OH | 浸涂法 | [ |
[MOEDEA][FAP] | 氢化的类金刚石膜/Si | Vertrel XF | 浸涂法 | [ |
[AHIm][PF6] | 羟基/乙烯基/氢化/甲基化Si | CH2Cl2 | 旋涂法 | [ |
[HEHIm][PF6] | 羟基/乙烯基/氢化/甲基化Si | CH2Cl2 | 旋涂法 | [ |
[P4446][BF4] | Si(100) | CH3COCH3 | 浸涂法 | [ |
[BPy][BF4] | Si(100) | CH3COCH3 | 浸涂法 | [ |
离子液体 | 基底 | 除气温度a T/K | 除气时间b t/h | 压强 p/Pa | 蒸发温度 T/K | 蒸发时间c t/min | 基底温度 T/K | 结构稳定 温度T/K | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
[BMP][FAP] | Au(111) | 438~463 | N | 4×10–8 | 450 | 10 s | 298 | 210 | [ |
[BMP][NTFI] | Ag(111) | — | 24 | 1×10–8 | 373 | 3 | — | 100~180 | [ |
TiO2(110) | 350 | 24 | 2×10–8 | 453 | 5 | — | 80~380 | [ | |
Au(111) | 360 | N | 5×10–8 | 375 | 3 | — | 111~170 | [ | |
Ag(111) | 360 | N | 5×10–8 | 375 | 3 | — | 134~180 | [ | |
Au(111) | — | 24 | 5×10–8 | 375 | 3 | — | 100~225 | [ | |
Cu(111) | 400 | N | 2×10–8 | 450 | — | 200 | 80~200 | [ | |
HOPG(0001) | 400 | N | 2×10–8 | 450 | — | — | 100 | [ | |
[Mmim][NTFI] | Ni(111) | 400 | N | 1×10–8 | 440 | — | 220±20 | 220 | [ |
Au(111) | 380~410 | N | 1×10–7 | 410~440 | — | 290~320 | — | [ | |
Ag(111) | — | — | 2×10–7 | 380~430 | — | 295~320 | 300 | [ | |
[Emim][NTFI] | Au(111) | 350 | 24 | 1×10–8 | 350~390 | — | — | 107~113 | [ |
Ag(111) | 350 | 24 | 1×10–8 | 350~390 | — | — | 108~130 | [ | |
HOPG | — | — | 1×10–6 | — | — | — | 180~205 | [ | |
Ni(111) | 353 | 12 | 1×10–6 | — | — | 150 | 150~200 | [ | |
玻璃 | — | — | 6×10–7 | 320 | 30 | — | — | [ | |
Au(110) | — | — | 5×10–8 | 423~523 | — | 128 | 311~323 | [ | |
[Emim][OTF] | Pd(111) | — | — | 2×10–8 | 220 | — | 220 | 220 | [ |
Au(111) | — | — | 1×10–7 | 440 | — | 298 | — | [ | |
Pd(111) | — | — | 2×10–8 | 300 | — | 298 | 300~380 | [ | |
[Bmim][NTFI] | Al2O3/NiAl(110) | — | — | 2×10–8 | 425~475 | N | — | 298~323 | [ |
[Hmim][NTFI] | CeO2(111)/CeO2–x | — | N | 1×10–8 | 385 | — | 160 | — | [ |
[Omim][NTFI] | Au(111) | 380~410 | N | 1×10–7 | 410~440 | — | 290~320 | — | [ |
Ag(111) | — | — | 2×10–7 | 380~430 | — | 295~320 | 300 | [ | |
Au(111) | 300 | 24 | 1×10–8 | 300~330 | — | — | 102~150 | [ | |
Ag(111) | 300 | 24 | 1×10–8 | 300~330 | — | — | 110~150 | [ | |
Li/Cu(111) | 375 | — | 5×10–7 | 413 | 10 | — | — | [ | |
HOPG | — | — | 5×10–7 | 400 | — | — | 100 | [ | |
Cu(100) | — | — | 5×10–8 | 423~503 | — | — | — | [ | |
Au(111) | — | — | 5×10–8 | 423~503 | — | — | — | [ | |
[Omim][BF4] | Cu(111) | 423/523 | N | 5×10–8 | 423~523 | — | 120 | 120 | [ |
[Omim]NTFI] [Omim][PF6] | Ag(111) | 370~430 | 24 | 8×10–8/3×10–7 | 403~413/ 428~443 | — | — | 90 | [ |
[Omim][PF6] [PFBmim][PF6] | Ag(111) | 370~460 | 24 | 2×10–7/5×10–7 | 423~443/ 443~463 | — | — | 82 | [ |
离子液体 | 基底 | 除气温度a T/K | 除气时间b t/h | 压强 p/Pa | 蒸发温度 T/K | 蒸发时间c t/min | 基底温度 T/K | 结构稳定 温度T/K | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
[BMP][FAP] | Au(111) | 438~463 | N | 4×10–8 | 450 | 10 s | 298 | 210 | [ |
[BMP][NTFI] | Ag(111) | — | 24 | 1×10–8 | 373 | 3 | — | 100~180 | [ |
TiO2(110) | 350 | 24 | 2×10–8 | 453 | 5 | — | 80~380 | [ | |
Au(111) | 360 | N | 5×10–8 | 375 | 3 | — | 111~170 | [ | |
Ag(111) | 360 | N | 5×10–8 | 375 | 3 | — | 134~180 | [ | |
Au(111) | — | 24 | 5×10–8 | 375 | 3 | — | 100~225 | [ | |
Cu(111) | 400 | N | 2×10–8 | 450 | — | 200 | 80~200 | [ | |
HOPG(0001) | 400 | N | 2×10–8 | 450 | — | — | 100 | [ | |
[Mmim][NTFI] | Ni(111) | 400 | N | 1×10–8 | 440 | — | 220±20 | 220 | [ |
Au(111) | 380~410 | N | 1×10–7 | 410~440 | — | 290~320 | — | [ | |
Ag(111) | — | — | 2×10–7 | 380~430 | — | 295~320 | 300 | [ | |
[Emim][NTFI] | Au(111) | 350 | 24 | 1×10–8 | 350~390 | — | — | 107~113 | [ |
Ag(111) | 350 | 24 | 1×10–8 | 350~390 | — | — | 108~130 | [ | |
HOPG | — | — | 1×10–6 | — | — | — | 180~205 | [ | |
Ni(111) | 353 | 12 | 1×10–6 | — | — | 150 | 150~200 | [ | |
玻璃 | — | — | 6×10–7 | 320 | 30 | — | — | [ | |
Au(110) | — | — | 5×10–8 | 423~523 | — | 128 | 311~323 | [ | |
[Emim][OTF] | Pd(111) | — | — | 2×10–8 | 220 | — | 220 | 220 | [ |
Au(111) | — | — | 1×10–7 | 440 | — | 298 | — | [ | |
Pd(111) | — | — | 2×10–8 | 300 | — | 298 | 300~380 | [ | |
[Bmim][NTFI] | Al2O3/NiAl(110) | — | — | 2×10–8 | 425~475 | N | — | 298~323 | [ |
[Hmim][NTFI] | CeO2(111)/CeO2–x | — | N | 1×10–8 | 385 | — | 160 | — | [ |
[Omim][NTFI] | Au(111) | 380~410 | N | 1×10–7 | 410~440 | — | 290~320 | — | [ |
Ag(111) | — | — | 2×10–7 | 380~430 | — | 295~320 | 300 | [ | |
Au(111) | 300 | 24 | 1×10–8 | 300~330 | — | — | 102~150 | [ | |
Ag(111) | 300 | 24 | 1×10–8 | 300~330 | — | — | 110~150 | [ | |
Li/Cu(111) | 375 | — | 5×10–7 | 413 | 10 | — | — | [ | |
HOPG | — | — | 5×10–7 | 400 | — | — | 100 | [ | |
Cu(100) | — | — | 5×10–8 | 423~503 | — | — | — | [ | |
Au(111) | — | — | 5×10–8 | 423~503 | — | — | — | [ | |
[Omim][BF4] | Cu(111) | 423/523 | N | 5×10–8 | 423~523 | — | 120 | 120 | [ |
[Omim]NTFI] [Omim][PF6] | Ag(111) | 370~430 | 24 | 8×10–8/3×10–7 | 403~413/ 428~443 | — | — | 90 | [ |
[Omim][PF6] [PFBmim][PF6] | Ag(111) | 370~460 | 24 | 2×10–7/5×10–7 | 423~443/ 443~463 | — | — | 82 | [ |
[1] |
Yin, C.; Wang, Z.K.; Liu, D.; Peng, Z.T.; Song, H.J.; Zhu, H.; Chen, Q.W.; Wu, K. Acta Chim. Sinica 2020, 78,695. (in Chinese)
|
( 尹岑, 王子宽, 刘丹, 彭展涛, 宋环君, 祝浩, 陈其伟, 吴凯, 化学学报, 2020, 78,695.)
|
|
[2] |
Hu, Z.; Liu, Z.B.; Tian, J.G. Chinese J. Chem. 2020, 38,981.
|
[3] |
Wang, Z.T.; Li, H.; Yan, S.C.; Fang, Q.R. Acta Chim. Sinica 2020, 78,63. (in Chinese)
|
( 王志涛, 李辉, 颜士臣, 方千荣, 化学学报, 2020, 78,63.)
|
|
[4] |
Huang, W.; Li, Y.G. Chinese J. Chem. 2019, 37,1291.
|
[5] |
Cao, L.Y.; Wang, T.T.; Wang, C. Chinese J. Chem. 2018, 36,754.
|
[6] |
Zhang, D.D.; Yuan, Z.Z.; Zhang, G.Q.; Tian, N.; Liu, D.M.; Zhang, Y.Z. Acta Chim. Sinica 2018, 76,537. (in Chinese)
|
( 张丹丹, 袁振洲, 张国庆, 田楠, 刘丹敏, 张永哲, 化学学报, 2018, 76,537.)
|
|
[7] |
Zhang, C.H.; Fu, L.; Zhang, Y.F.; Liu, Z.F. Acta Chim. Sinica 2013, 71,308. (in Chinese)
|
( 张朝华, 付磊, 张艳锋, 刘忠范, 化学学报, 2013, 71,308.)
|
|
[8] |
Ji, J.P.; Song, X.F.; Liu, J.Z.; Yan, Z.; Huo, C.X.; Zhang, S.L.; Su, M.; Liao, L.; Wang, W.H.; Ni, Z.H. Nat. Commun. 2016, 7,1.
|
[9] |
Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H. Nature 2017, 546,270.
|
[10] |
Jariwala, D.; Marks, T.J.; Hersam, M.C. Nat. Mater. 2017, 16,170.
|
[11] |
Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I.E.; Cepellotti, A.; Pizzi, G. Nat. Nanotechnol. 2018, 13,246.
|
[12] |
Pârvulescu, V.I.; Hardacre, C. Chem. Rev. 2007, 107,2615.
|
[13] |
Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Appl. Catal. A: Gen. 2010, 373,1.
|
[14] |
Maton, C.; De Vos, N.; Stevens, C.V. Chem. Soc. Rev. 2013, 42,5963.
|
[15] |
Leng, M.H.; Chen, S.M.; Zhang, J.L.; Lang, H.Y.; Kang, Y.H.; Zhang, S.J. Acta Chim. Sinica 2015, 73,403. (in Chinese)
|
( 冷明浩, 陈仕谋, 张军玲, 郎海燕, 康艳红, 张锁江, 化学学报, 2015, 73,403.)
|
|
[16] |
Liu, M.Y.; Che, J.N.; Wu, W.H.; Lu, Y.X.; Peng, C.J.; Liu, H.L.; Lu, H.; Yang, Q.; Wang, H.L. Acta Chim. Sinica 2015, 73,116. (in Chinese)
|
( 刘梦莹, 车佳宁, 吴蔚闳, 卢运祥, 彭昌军, 刘洪来, 卢浩, 杨强, 杨强, 汪华林, 化学学报, 2015, 73,116.)
|
|
[17] |
Podgorsek, A.; Jacquemin, J.; Pádua, A.; Costa Gomes, M. Chem. Rev. 2016, 116,6075.
|
[18] |
Zhang, S.J.; Wang, Y.L.; He, H.Y.; Huo, F.; Lu, Y.M.; Zhang, X.C.; Dong, K. Green Energy Environ. 2017, 2,329.
|
[19] |
Wang, J.J. Green Energy Environ. 2020, 5,122.
|
[20] |
Wang, Y.L.; Qian, C.; Huo, F.; Qin, J.Y.; He, H.Y. J. Mater. Chem. A 2020, 8,19908.
|
[21] |
Wang, Y.L.; Qian, C.; Huo, F.; Xu, B.H.; He, H.Y.; Zhang, S.J. AIChE J. 2020.doi: 10.1002/aic.17060.
|
[22] |
He, Y.Q.; Li, H.; Qu, C.Y.; Cao, W.; Ma, M. Green Chem. Eng. 2020. doi: 10.1016/j.gce.2020.10.006.
|
[23] |
Yuan, X.Q.; Zhang, Y.Q.; Li, Z.Y.; Huo, F.; Dong, Y.H.; He, H.Y. Chin. J. Chem. 2020. doi: 10.1002/cjoc.202000414.
|
[24] |
Zhang, H.H.; Zhu, M.Y.; Zhao, W.; Li, S.; Feng, G. Green Energy Environ. 2018, 3,120.
|
[25] |
Souda, R. J. Phys. Chem. B 2009, 113,12973.
|
[26] |
Uhl, B.; Buchner, F.; Alwast, D.; Wagner, N.; Behm, R.J. Beilstein J. Nanotechnol. 2013, 4,903.
|
[27] |
Buchner, F.; Forster-Tonigold, K.; Bozorgchenani, M.; Gross, A.; Behm, R.J. r. J. Phys. Chem. Lett. 2016, 7,226.
|
[28] |
Uhl, B.; Huang, H.; Alwast, D.; Buchner, F.; Behm, R.J. Phys. Chem. Chem. Phys. 2015, 17,23816.
|
[29] |
Maruyama, S.; Prastiawan, I.B. H.; Toyabe, K.; Higuchi, Y.; Koganezawa, T.; Kubo, M.; Matsumoto, Y. ACS Nano 2018, 12,10509.
|
[30] |
Wang, H.Z.; Lu, Q.M.; Ye, C.F.; Liu, W.M.; Cui, Z.J. Wear 2004, 256,44.
|
[31] |
Funston, A.M.; Fadeeva, T.A.; Wishart, J.F.; Castner, E.W. J. Phys. Chem. B 2007, 111,4963.
|
[32] |
Bhushan, B.; Palacio, M.; Kinzig, B. J. Colloid Interf. Sci. 2008, 317,275.
|
[33] |
Palacio, M.; Bhushan, B. J. Vac. Sci. Technol. A 2009, 27,986.
|
[34] |
Zhu, M.; Yan, J.; Mo, Y.F.; Bai, M.W. Tribol. Lett. 2008, 29,177.
|
[35] |
Sweeney, J.; Hausen, F.; Hayes, R.; Webber, G.B.; Endres, F.; Rutland, M.W.; Bennewitz, R.; Atkin, R. Phys. Rev. Lett. 2012, 109,155502.
|
[36] |
Liu, Y.D.; Zhang, Y.; Wu, G.Z.; Hu, J. J. Am. Chem. Soc. 2006, 128,7456.
|
[37] |
Bovio, S.; Podesta, A.; Lenardi, C.; Milani, P. J. Phys. Chem. B 2009, 113,6600.
|
[38] |
Galluzzi, M.; Bovio, S.; Milani, P.; Podestà, A. J. Phys. Chem. C 2018, 122,7934.
|
[39] |
Lu, Y.M.; Chen, W.; Wang, Y.L.; Huo, F.; Zhang, L.; He, H.Y.; Zhang, S.J. Phys. Chem. Chem. Phys. 2020, 22,1820.
|
[40] |
Wang, Z.; Priest, C. Langmuir 2013, 29,11344.
|
[41] |
Beattie, D.A.; Espinosa-Marzal, R.M.; Ho, T.T.; Popescu, M.N.; Ralston, J.; Richard, C.l. J.; Sellapperumage, P.M.; Krasowska, M. J. Phys. Chem. C 2013, 117,23676.
|
[42] |
Gong, X.; West, B.; Taylor, A.; Li, L. Ind. Eng. Chem. Res. 2016, 55,6391.
|
[43] |
Mo, Y.F.; Huang, F.C.; Zhao, F. Surf. Interface Anal. 2011, 43,1006.
|
[44] |
Gong, X.; Kozbial, A.; Rose, F.; Li, L. ACS Appl. Mater. Inter. 2015, 7,7078.
|
[45] |
Zhang, F.C.; Sha, M.L.; Ren, X.P.; Wu, G.Z.; Hu, J.; Zhang, Y. Chin. Phys. Lett. 2010, 27,086101.
|
[46] |
Zhao, W.J.; Zhu, M.; Mo, Y.F.; Bai, M.W. Colloid. Surface. A 2009, 332,78.
|
[47] |
Pu, J.B.; Liu, X.F.; Wang, L.P.; Xue, Q.J. Surf. Interface Anal. 2011, 43,1332..
|
[48] |
Bovio, S.; Podesta, A.; Milani, P.; Ballone, P.; Del Pópolo, M. J. Phys.: Condens. Matter 2009, 21,424118.
|
[49] |
Nishida, J.; Breen, J.P.; Wu, B.; Fayer, M.D. ACS Cent. Sci. 2018, 4,1065.
|
[50] |
Wu, B.; Breen, J.P.; Fayer, M.D. J. Phys. Chem. C 2020, 124,4179.
|
[51] |
Zhao, W.J.; Mo, Y.F.; Pu, J.B.; Bai, M.W. Tribol. Int. 2009, 42,828.
|
[52] |
Köhler, R.; Restolho, J.; Krastev, R.; Shimizu, K.; Canongia Lopes, J.N.; Saramago, B. J. Phys. Chem. Lett. 2011, 2,1551.
|
[53] |
Bakshi, P.S.; Gusain, R.; Khatri, O.P. RSC Adv. 2016, 6,78296.
|
[54] |
Lee, B.S.; Chi, Y.S.; Lee, J.K.; Choi, I.S.; Song, C.E.; Namgoong, S.K.; Lee, S.-g. J. Am. Chem. Soc. 2004, 126,480.
|
[55] |
Branca, M.; Correia-Ledo, D.; Bolduc, O.R.; Ratel, M.; Schmitzer, A.R.; Masson, J.-F. Phys. Chem. Chem. Phys. 2011, 13,12015.
|
[56] |
Pu, J.B.; Huang, D.M.; Wang, L.P.; Xue, Q.J. Colloid. Surface. A 2010, 372,155.
|
[57] |
Pu, J.B.; Jiang, D.; Mo, Y.F.; Wang, L.P.; Xue, Q.J. Surf. Coat. Tech. 2011, 205,4855.
|
[58] |
Zhao, W.J.; Wang, Y.; Wang, L.P.; Bai, M.W.; Xue, Q.J. Colloid. Surface. A 2010, 361,118.
|
[59] |
Mo, Y.F.; Yu, B.; Zhao, W.J.; Bai, M.W. Appl. Surf. Sci. 2008, 255,2276.
|
[60] |
Yu, B.; Zhou, F.; Mu, Z.G.; Liang, Y.M.; Liu, W.M. Tribol. Int. 2006, 39,879.
|
[61] |
Gusain, R.; Kokufu, S.; Bakshi, P.S.; Utsunomiya, T.; Ichii, T.; Sugimura, H.; Khatri, O.P. Appl. Surf. Sci. 2016, 364,878.
|
[62] |
Erwin, A.J.; Xu, W.N.; He, H.K.; Matyjaszewski, K.; Tsukruk, V.V. Langmuir 2017, 33,3187.
|
[63] |
Lee, H.; Stryutsky, A.V.; Korolovych, V.F.; Mikan, E.; Shevchenko, V.V.; Tsukruk, V.V. Langmuir 2019, 35,11809.
|
[64] |
Sieling, T.; Christoffers, J.; Brand, I. ACS Sustain. Chem. Eng. 2019, 7,11593.
|
[65] |
Sieling, T.; Brand, I. ChemElectroChem 2020, 7,3168.
|
[66] |
Eftaiha, A.; Qaroush, A.K.; Kayed, G.G.; Abdel Rahman, A.R. K.; Assaf, K.I.; Paige, M.F. ChemPhysChem 2020, 21,1858.
|
[67] |
Earle, M.J.; Esperança, J.M.; Gilea, M.A.; Lopes, J.N. C.; Rebelo, L.P.; Magee, J.W.; Seddon, K.R.; Widegren, J.A. Nature 2006, 439,831.
|
[68] |
Armstrong, J.P.; Hurst, C.; Jones, R.G.; Licence, P.; Lovelock, K.R.; Satterley, C.J.; Villar-Garcia, I.J. Phys. Chem. Chem. Phys. 2007, 9,982.
|
[69] |
Waldmann, T.; Huang, H.H.; Hoster, H.E.; Höfft, O.; Endres, F.; Behm, R.J. ChemPhysChem 2011, 12,2565.
|
[70] |
Buchner, F.; Uhl, B.; Forster-Tonigold, K.; Bansmann, J.; Groß, A.; Behm, R.J. J. Chem. Phys. 2018, 148,193821.
|
[71] |
Buchner, F.; Forster-Tonigold, K.; Uhl, B.; Alwast, D.; Wagner, N.; Farkhondeh, H.; Groß, A.; Behm, R.J. ACS Nano 2013, 7,7773.
|
[72] |
Uhl, B.; Hekmatfar, M.; Buchner, F.; Behm, R.J. Phys. Chem. Chem. Phys. 2016, 18,6618.
|
[73] |
Uhl, B.; Cremer, T.; Roos, M.; Maier, F.; Steinrück, H.-P.; Behm, R.J. Phys. Chem. Chem. Phys. 2013, 15,17295.
|
[74] |
Uhl, B.; Buchner, F.; Gabler, S.; Bozorgchenani, M.; Behm, R.J. Chem. Commun. 2014, 50,8601.
|
[75] |
Buchner, F.; Forster-Tonigold, K.; Bozorgchenani, M.; Gross, A.; Behm, R.J. J. Phys. Chem. Lett. 2016, 7,226.
|
[76] |
Buchner, F.; Bozorgchenani, M.; Uhl, B.; Farkhondeh, H.; Bansmann, J.; Behm, R.J. J. Phys. Chem. C 2015, 119,16649.
|
[77] |
Cremer, T.; Wibmer, L.; Calderón, S.K.; Deyko, A.; Maier, F.; Steinrück, H.-P. Phys. Chem. Chem. Phys. 2012, 14,5153.
|
[78] |
Cremer, T.; Stark, M.; Deyko, A.; Steinrück, H.-P.; Maier, F. Langmuir 2011, 27,3662.
|
[79] |
Lexow, M.; Talwar, T.; Heller, B.S.; May, B.; Bhuin, R.G.; Maier, F.; Steinrück, H.-P. Phys. Chem. Chem. Phys. 2018, 20,12929.
|
[80] |
Souda, R. J. Phys. Chem. B 2008, 112,15349.
|
[81] |
Cremer, T.; Killian, M.; Gottfried, J.M.; Paape, N.; Wasserscheid, P.; Maier, F.; Steinrück, H.P. ChemPhysChem 2008, 9,2185.
|
[82] |
Foulston, R.; Gangopadhyay, S.; Chiutu, C.; Moriarty, P.; Jones, R.G. Phys. Chem. Chem. Phys. 2012, 14,6054.
|
[83] |
Schernich, S.; Wagner, V.; Taccardi, N.; Wasserscheid, P.; Laurin, M.; Libuda, J. Langmuir 2014, 30,6846.
|
[84] |
Rietzler, F.; May, B.; Steinrück, H.-P.; Maier, F. Phys. Chem. Chem. Phys. 2016, 18,25143.
|
[85] |
Bauer, T.; Mehl, S.; Brummel, O.; Pohako-Esko, K.; Wasserscheid, P.; Libuda, J. J. Phys. Chem. C 2016, 120,4453.
|
[86] |
Sobota, M.; Nikiforidis, I.; Hieringer, W.; Paape, N.; Happel, M.; Steinrück, H.-P.; Görling, A.; Wasserscheid, P.; Laurin, M.; Libuda, J. Langmuir 2010, 26,7199.
|
[87] |
Schernich, S.; Laurin, M.; Lykhach, Y.; Steinrück, H.-P.; Tsud, N.; Skála, T.s.; Prince, K.C.; Taccardi, N.; Matolín, V.; Wasserscheid, P. J. Phys. Chem. Lett. 2013, 4,30.
|
[88] |
Olschewski, M.; Gustus, R.; Höfft, O.; Lahiri, A.; Endres, F. J. Phys. Chem. C 2017, 121,2675.
|
[89] |
Carstens, T.; Gustus, R.; Höfft, O.; Borisenko, N.; Endres, F.; Li, H.; Wood, R.J.; Page, A.J.; Atkin, R. J. Phys. Chem. C 2014, 118,10833.
|
[90] |
Biedron, A.B.; Garfunkel, E.L.; Castner Jr, E.W.; Rangan, S. J. Chem. Phys. 2017, 146,054704.
|
[91] |
Syres, K.L.; Jones, R.G. Langmuir 2015, 31,9799.
|
[92] |
Lexow, M.; Heller, B.S.; Maier, F.; Steinrück, H.P. ChemPhysChem 2018, 19,2978.
|
[93] |
Lexow, M.; Heller, B.S.; Partl, G.; Bhuin, R.G.; Maier, F.; Steinrück, H.-P. Langmuir 2018, 35,398.
|
[94] |
Lahiri, A.; Carstens, T.; Atkin, R.; Borisenko, N.; Endres, F. J. Phys. Chem. C 2015, 119,16734.
|
[95] |
Buchner, F.; Kim, J.; Adler, C.; Bozorgchenani, M.; Bansmann, J.; Behm, R.J. J. Phys. Chem. Lett. 2017, 8,5804.
|
[96] |
Rietzler, F.; Nagengast, J.; Steinrück, H.-P.; Maier, F. J. Phys. Chem. C 2015, 119,28068.
|
[97] |
Koel, B.E.; Sellidj, A.; Paffett, M. Phys. Rev. B 1992, 46,7846.
|
[98] |
Rietzler, F.; Piermaier, M.; Deyko, A.; Steinrück, H.-P.; Maier, F. Langmuir 2014, 30,1063.
|
[1] | Yuqing Shi, Mingzhu Chu, Bo Han, Haojie Ma, Ran Li, Xueyan Hou, Yuqi Zhang, Ji-Jiang Wang. Smart Two-dimensional Photonic Crystal Hydrogel for Accurate Detection of Hg2+ [J]. Acta Chimica Sinica, 2024, 82(1): 9-15. |
[2] | Shaojuan Zeng, Xueqi Sun, Yinge Bai, Lu Bai, Shuang Zheng, Xiangping Zhang, Suojiang Zhang. Research Progress of CO2 Capture and Separation by Functionalized Ionic Liquids and Materials★ [J]. Acta Chimica Sinica, 2023, 81(6): 627-645. |
[3] | Chen Jian, Cai Zhuoer, Jiao Shulin, Zhang Xiang, Hu Jinzhong, Liu Min, Sun Baiwang, Hua Xiuni. A Thermally Responsive Dielectric Switchable Zero-Dimensional Organic-Inorganic Hybrid Material: (C3H6NH2)2CoCl4 [J]. Acta Chimica Sinica, 2023, 81(5): 480-485. |
[4] | Wen Liu, Yujie Wang, Huiqin Yang, Chengjie Li, Na Wu, Yang Yan. The Preparation of Carbon Nanotubes/Reduced Graphene Oxide Current Collector by Non-covalent Induction of Ionic Liquid for Sodium Metal Anode [J]. Acta Chimica Sinica, 2023, 81(10): 1379-1386. |
[5] | Xiaoqian Li, Jing Zhang, Fangfang Su, Dechao Wang, Dongdong Yao, Yaping Zheng. Construction and Application of Porous Ionic Liquids [J]. Acta Chimica Sinica, 2022, 80(6): 848-860. |
[6] | Xufa He, Kangle Jia, Longfei Yu, Mingjie Liu, Xiaoshan Zheng, Huanling Li, Jinlan Xin, Linjia Huang. pH-Responsive Pickering Emulsions Synergistically Stabilized by Maleopimaric Acid and Alumina Nanoparticles [J]. Acta Chimica Sinica, 2022, 80(6): 765-771. |
[7] | Fen Zhang, Xiaoqi Li, Shiguo Han, Fafa Wu, Xitao Liu, Zhihua Sun, Junhua Luo. Bulk Single Crystal Growth of a Two-Dimensional Halide Perovskite Ferroelectric for Highly Polarized-Sensitive Photodetection※ [J]. Acta Chimica Sinica, 2022, 80(3): 237-243. |
[8] | Wenjun Wu, Yuting Li, Xi Feng, Wenxing Ding. Perovskite Dual-function Passivator: Room Temperature Ionic Liquid Obtained from Mechanochemical Preparation [J]. Acta Chimica Sinica, 2022, 80(11): 1469-1475. |
[9] | He-Nan Wang, An-Ge Zhang, Zhong Zhang, Hong-Rui Tian, Qian Yue, Xue Zhao, Ying Lu, Shu-Xia Liu. Synthesis and Properties of a Series of Pure Inorganic Ionic Liquids Based on Rare Earth Cations and Polyoxometalates [J]. Acta Chimica Sinica, 2021, 79(7): 920-924. |
[10] | Aodi Shi, Si Chen, Songsheng Zheng, Zhaolin Wang. Correlation between the Pseudo-Capacitance Behavior and the Second-Order Phase Transition in the Li+ Insertion/Desertion in Cu3Si [J]. Acta Chimica Sinica, 2021, 79(12): 1511-1517. |
[11] | Haojie Xu, Shiguo Han, Zhihua Sun, Junhua Luo. Recent Advances of Two-dimensional Organic-Inorganic Hybrid Perovskite Ferroelectric Materials [J]. Acta Chimica Sinica, 2021, 79(1): 23-35. |
[12] | Yang Ying, Lin Feiyu, Zhu Congtan, Chen Tian, Ma Shupeng, Luo Yuan, Zhu Liu, Guo Xueyi. Research Progress in the Stability of Inorganic Perovskite Solar Cells [J]. Acta Chimica Sinica, 2020, 78(3): 217-231. |
[13] | Zhao Jiongpeng, Wang Weiwei, Han Songde, Li Quanwen, Li Na, Liu Fuchen, Bu Xianhe. Construction, Magnetic and Dielectric Properties of Mixed-Valence Iron Formate with Methylammonium Guest [J]. Acta Chimica Sinica, 2020, 78(11): 1223-1228. |
[14] | Yu Jun, Yang Yusen, Wei Min. Preparation and Catalytic Performance of Supported Catalysts Derived from Layered Double Hydroxides [J]. Acta Chimica Sinica, 2019, 77(11): 1129-1139. |
[15] | Wang Yinhang, Li Wei, Luo Sha, Liu Shouxin, Ma Chunhui, Li Jian. Research Advances on the Applications of Immobilized Ionic Liquids Functional Materials [J]. Acta Chim. Sinica, 2018, 76(2): 85-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||