Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (3): 344-352.DOI: 10.6023/A20100476 Previous Articles Next Articles
Article
投稿日期:
2020-10-15
发布日期:
2020-12-24
通讯作者:
隋曼龄
作者简介:
基金资助:
Yue Lua,b, Yang Gea,b, Manling Suia,b,*()
Received:
2020-10-15
Published:
2020-12-24
Contact:
Manling Sui
Supported by:
Share
Yue Lu, Yang Ge, Manling Sui. Different Degradation Mechanism of CH3NH3PbI3 Based Perovskite Solar Cells under Ultraviolet and Visible Light Illumination[J]. Acta Chimica Sinica, 2021, 79(3): 344-352.
[1] |
National Renewable Energy Laboratory NREL. Best Research-Cell Efficiency Chart 2020, https://www.nrel.gov/pv/cell-efficiency.html.
|
[2] |
Ji, J.; Liu, X.; Jiang, H. R.; Duan, M. J.; Liu, B. Y.; Huang, H.; Wei, D.; Li, Y. D.; Li, M. C. iScience 2020, 23,101013.
doi: 10.1016/j.isci.2020.101013 pmid: 32299056 |
[3] |
Wang, M. H.; Wan, L.; Gao, X, Y.; Yuan, W. B.; Fang, J. F.; Tao, Y. T.; Huang, W. Acta Chim. Sinica 2019, 77,741. c62e2ed1-c90e-4832-afd9-25274164b4e9
doi: 10.6023/A19060200 |
( 王梦涵, 万里, 高旭宇, 袁文博, 方俊峰, 陶友田, 黄维, 化学学报, 2019, 77,741.) c62e2ed1-c90e-4832-afd9-25274164b4e9
doi: 10.6023/A19060200 |
|
[4] |
Li, X.; Zhang, T. Y.; Wang, T.; Zhao, Y. X. Acta Chim. Sinica 2019, 77,1075.
doi: 10.6023/A19080292 |
( 李鑫, 张太阳, 王甜, 赵一新, 化学学报, 2019, 77, 1075.)
|
|
[5] |
Liu, X.; Wang, Y. B.; Wu, T. H.; He, X.; Meng, X. Y.; Barbaud, J. L.; Chen, H.; Segawa, H.; Yang, X. D.; Han, L. Y. Nat. Commun. 2020, 11,2678.
pmid: 32472006 |
[6] |
Wang, Y. B.; Wu, T. H.; Barbaud, J.L; Kong, W. Y.; Chen, H.; Yang, X. D.; Han, L. Y. Science 2019, 365,687.
doi: 10.1126/science.aax8018 pmid: 31416961 |
[7] |
Yang, Y.; Zhu, C. T.; Lin, F. Y.; Chen, T.; Pan, D. Q.; Guo, X. Y. Acta Chim. Sinica 2019, 77,964. 5a45d5ba-a7b8-4619-b37e-b2fcd6fdda67
doi: 10.6023/A19040143 |
( 杨英, 朱从潭, 林飞宇, 陈甜, 潘德群, 郭学益. 化学学报, 2019, 77,964.) 5a45d5ba-a7b8-4619-b37e-b2fcd6fdda67
doi: 10.6023/A19040143 |
|
[8] |
Li, N. X.; Tao, S. X.; Chen, Y. H.; Niu, X. X.; Onwudinati, C. K.; Hu, C.; Qiu, Z. W.; Xu, Z. Q.; Zheng, G. H. J.; Wang, L. G.; Zhang, Y.; Li, L.; Liu, H. F.; Lun, Y. Z.; Hong, J. W.; Wang, X. X.; Liu, Y. Q.; Xie, H. P.; Gao, Y. L.; Bai, Y.; Yang, S. H.; Brocks, G.; Chen, Q.; Zhou, H. P. Nat. Energy 2019, 4,408.
doi: 10.1038/s41560-019-0382-6 |
[9] |
Ren, H.; Yu, S. D.; Chao, L. F.; Xia, Y. D.; Sun, Y. H.; Zuo, S. W.; Li, F.; Niu, T. T.; Yang, Y. G.; Ju, h. X.; Du, H. Y.; Gao, X. Y.; Zhang, J.; Wang, J. P.; Zhang, L. J.; Chen, Y. H.; Huang, W. Nat. Photonics 2020, 14,154.
doi: 10.1038/s41566-019-0572-6 |
[10] |
Chen, X. Y.; Xie, J. J.; Wang, W.; Yuan, H. H.; Xu, D.; Zhang, T.; He, Y. L.; Shen, H. J. Acta Chim. Sinica 2019, 77,9. 9c89b163-7dd0-4ca5-a4dd-1c917b3bf498
doi: 10.6023/A18100447 |
( 陈薪羽, 解俊杰, 王炜, 袁慧慧, 许頔, 张焘, 何云龙, 沈沪江. 化学学报, 2019, 77,9.) 9c89b163-7dd0-4ca5-a4dd-1c917b3bf498
doi: 10.6023/A18100447 |
|
[11] |
Li, X. D.; Zhang, W. X.; Wang, Y. C.; Zhang, W. J.; Wang, H. Q.; Fang, J. F. Nat. Commun. 2018, 9,3806.
doi: 10.1038/s41467-018-06204-2 pmid: 30228277 |
[12] |
Li, N. X.; Niu, X. X.; Chen, Q.; Zhou, H. P. Chem. Soc. Rev. 2020, 49,8235.
doi: 10.1039/d0cs00573h pmid: 32909584 |
[13] |
Ono, L. K.; Qi, Y. B.; Liu, S. Z. Joule 2018, 2,1961.
doi: 10.1016/j.joule.2018.07.007 |
[14] |
Meng, L.; You, J. B.; Yang, Y. Nat. Commun. 2018, 9,5265.
pmid: 30532038 |
[15] |
Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D. Chem. Rev. 2019, 119,3418.
pmid: 30444609 |
[16] |
Qu, Q. D.; Bao, X. Z.; Zhang, Y. A.; Shao, H. Y.; Xing, G. H.; Li, X. P.; Shao, L. Y.; Bao, Q. L. Nano Mater. Sci. 2019, 1,268.
|
[17] |
Qaid, S. M. H.; Al Sobaie, M. S.; Khan, M. A.; Bedja, I. M.; Alharbi, F. H.; Nazeeryddin, M. K.; Aldwayyan, A. S. Mater. Lett. 2016, 164,498.
doi: 10.1016/j.matlet.2015.10.135 |
[18] |
Eames, C.; Frost, J. M.; Barnes, P. R.; O’regan, B. C.; Walsh, A.; Islam, M. S. Nat. Commun. 2015, 6,7497.
doi: 10.1038/ncomms8497 pmid: 26105623 |
[19] |
Meloni, S.; Moehl, T.; Tress, W.; Franckevičius, M.; Saliba, M.; Lee, Y. H.; Gao, P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Rothlisberger, U.; Graetzel, M. Nat. Commun. 2016, 7,10334.
doi: 10.1038/ncomms10334 pmid: 26852685 |
[20] |
Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Energ. Environ. Sci. 2015, 8,2118.
doi: 10.1039/C5EE01265A |
[21] |
Setlow, R. B. Natl. Acad. Sci. 1974, 71,3363.
doi: 10.1073/pnas.71.9.3363 |
[22] |
Travkin, V. V.; Yunin, P. A.; Fedoseev, A. N.; Okhapkin, A. I.; Sachkov, Y. I.; Pakhomov, G. L. Solid State. Sci. 2020, 99,106051.
doi: 10.1016/j.solidstatesciences.2019.106051 |
[23] |
Lu, Y.; Ge, Y.; Sui, M. L. Acta Phys.-Chim. Sin. 2021, 37,2007088.
|
( 卢岳, 葛杨, 隋曼龄, 物理化学学报, 2021, 37,2007088.)
|
|
[24] |
Lee, S. W.; Kim, S.; Bae, S.; Cho, K.; Chung, T.; Mundt, L. E.; Lee, S.; Park, S.; Park, H.; Schubert, M. C.; Glunz, S. W.; Ko, Y.; Jun, Y. Kang, Y.; Lee, H. S.; Kim, D. Sci. Rep. 2016, 6,38150.
doi: 10.1038/srep38150 pmid: 27909338 |
[25] |
Nickel, N. H.; Lang, F.; Brus, V. V.; Shargaieva, O.; Rappich, J. Adv. Electron. Mater. 2017, 3,1700158.
doi: 10.1002/aelm.201700158 |
[26] |
Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J. Nat. Commun. 2013, 4,3885.
|
[27] |
Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. Nat. Energy 2016, 2,16177.
doi: 10.1038/nenergy.2016.177 |
[28] |
Farooq, A.; Hossain, I. M.; Moghadamzadeh, S.; Schwenzer, J. A.; Abzieher, T.; Richards, B.; Klampaftis, E.; Paetzold, U. W. ACS Appl. Mater. Interfaces 2018, 10,21985.
pmid: 29888902 |
[29] |
Roose, B.; Baena, J. P. C.; Gödel, K. C.; Graetzel, M.; Hagfeldt, A.; Steiner, U.; Abate, A. Nano Energy 2016, 30,517.
doi: 10.1016/j.nanoen.2016.10.055 |
[30] |
Zou, W. Y.; Gonzalez, A; Jampaiah, D.; Ramanathan, R.; Taha, M.; Walia, S.; Sriram, S.; Bhaskaran, M.; Dominguez-Vera, J. M.; Bansal, V. Nat. Commun. 2018, 9,3743.
doi: 10.1038/s41467-018-06273-3 pmid: 30254260 |
[31] |
Bella, F.; Griffini, G.; Correa-Baena, J. P.; Saracco, G.; Grätzel, M.; Hagfeldt, A.; Turri, S.; Gerbaldi, C. Science 2016, 354,203.
doi: 10.1126/science.aah4046 pmid: 27708051 |
[32] |
Krishnan, U.; Kaur, M.; Kumar, M.; Kumar, A. J. Photon. Energy 2019, 9,021001.
|
[33] |
Sun, Y.; Fang, X.; Ma, Z.; Xu, L.; Lu, Y.; Yu, Q.; Yuan, N. Y.; Ding, J. J. Mater. Chem. C 2017, 5,8682.
doi: 10.1039/C7TC02603J |
[34] |
Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H. J. Phys. Chem. C 2014, 118,16995.
doi: 10.1021/jp500449z |
[35] |
Wang, S. H.; Jiang, Y.; Juarez-Perez, E. J.; Ono, L. K.; Qi, Y. B. Nat. Energy 2017, 2,16195.
doi: 10.1038/nenergy.2016.195 |
[36] |
Beresolin, B. M.; Hammouda, S. B.; Sillanpaa, M. Nanomaterials 2020, 10,115.
doi: 10.3390/nano10010115 |
[37] |
Lang F. X.; Shargaieva O.; Brus V. V.; Neitzert H. C.; Rappich J.; Nickel N. H. Adv. Mater. 2018, 30,1702905.
doi: 10.1002/adma.v30.3 |
[38] |
Song, Z. M.; Wang, C. L.; Phillips, A. B.; Grice, C. R.; Zhao, D. W.; Yu, Y.; Chen, C.; Li, C; W.; Yin, X. X.; Ellingson, R. J.; Heben, M; J.; Yan, Y. F. Sustain. Energ. Fuels. 2018, 2,2460.
doi: 10.1039/C8SE00358K |
[39] |
Tang, X.; Brandl, M.; May, B.; Levchuk, I.; Hou, Y.; Richter, M.; Chen, H. W.; Chen, S.; Kahmann, S.; Osvet, A.; Maier, F.; Steinrück, H. P.; Hock, R.; Matt, G. J.; Brabec, C. J. Mater. Chem. A 2016, 4,15896.
doi: 10.1039/C6TA06497C |
[40] |
Juarez-Perez, E. J.; Ono, L. K.; Maeda, M.; Jiang, Y.; Hawash, Z.; Qi, Y. J. Mater. Chem. A 2018, 6,9604.
doi: 10.1039/C8TA03501F |
[41] |
Xiong, L. B.; Guo, Y. X.; Wen, J.; Liu, H. R.; Yang, G.; Qin, P. L.; Fang, G. J. Adv. Funct. Mater. 2018, 28,1802757.
doi: 10.1002/adfm.v28.35 |
[42] |
Bai, H.; Kanda, H. Asiri, A.; Nazeeruddin, M.; Mallick, T. Sustainable Energy Fuels 2020, 4,528.
doi: 10.1039/C9SE00550A |
[43] |
Ompong, D.; Singh, J. Org. Electron. 2018, 63,104.
doi: 10.1016/j.orgel.2018.09.006 |
[44] |
Williams, D. B.; Carter, C. B. The transmission electron microscope. Springer, Boston, MA, 1996, pp.3-17.
|
[45] |
Shlenskay, N. N.; Belich, N. A.; Grätzel, M.; Goodilin, E. A. Tarasov, A. B. J. Mater. Chem. A. 2018, 6,1780.
doi: 10.1039/C7TA10217H |
[46] |
Ming, W, M.; Yang, D. W.; Li, T. S.; Zhang, L. J.; Du, M. H. Adv. Sci. 2018, 5.1700662.
doi: 10.1002/advs.201700662 |
[47] |
Jiang, C. S.; Yang, M.; Zhou, Y.; To, B.; Nanayakkara, S. U.; Luther, J. M.; Zhou, W. L.; Berry, J. J.; de Lagemaat, J. van.; Padture, N. P.; Zhu, K.; Al-Jassim, M. M. Nat. Commun. 2015, 6,8397.
doi: 10.1038/ncomms9397 pmid: 26411597 |
[48] |
Hang, P. J.; Xie, j. s.; Li, G.; Wang, Y.; Fang, D. S.; Yao. Y. X.; Xie, D. Y.; Cui, C.; Yan, K. Y.; Xu, J. B.; Yang, D. R.; Yu, X. G. iScience 2019, 21,217.
pmid: 31675551 |
[49] |
Bakra, Z. H.; Wali, Q.; Fakharuddin, A.; Schmidt-Mende, L.; Brown, T. M., Jose, R. Nano Energy 2017, 34,271.
doi: 10.1016/j.nanoen.2017.02.025 |
[50] |
Wu, S.; Chen, R.; Zhang, S.; Babu, B. H.; Yue, Y.; Zhu, H.; Yang, Z. C.; Chen, C. L.; Chen, W. T.; Huang, Y. Q.; Fang, S. Y.; Liu, T. L.; Han, L. Y.; Chen, W. Nat. Commun. 2019, 10,1161.
pmid: 30858370 |
[51] |
Barboni, D.; Souza, R. A. Energ. Environ. Sci. 2018, 11,3266.
doi: 10.1039/C8EE01697F |
[52] |
Wang, S.; Yuan, W.; Meng, Y. S. ACS Appl. Mater. Inter. 2015, 7,24791.
doi: 10.1021/acsami.5b07703 |
[53] |
Sanchez, R. S.; Mas-Marza, E. Sol. Energ. Mate. Sol. C. 2016, 158,189.
|
[54] |
Khenkin, M. V.; Katz, E. A.; Abate, A.; Bardizza, G.; Berry, J. J.; Brabec, C. J.; Brunetti, F.; Bulovic, V.; Burlingame, Q.; Di Carlo, A.; Cheacharoen, R.; Cheng, Y. B.; Colsmann, A.; Cros, S.; Domanski, K.; Dusza, M.; Fell, C. J.; Forrest, S. R.; Galagan, Y.; Di Girolamo, D.; Grätzel, M.; Hagfeldt, A.; von Hauff, E.; Hoppe, H.; Kettle, J.; Köbler, H.; Leite, M. S.; Liu, S. (Frank); Loo, Y. L.; Luther, J. M.; Ma, C. Q.; Madsen, M.; Manceau, M.; Matheron, M.; McGehee, M.; Meizner, R.; Nazeeruddin, M. K.; Nogueira, A. F.; Odaba, Ç.; Osherov, A.; Park, N. G.; Reese, M. O.; De Rossi, F.; Saliba, M.; Schubert, U. S.; Snaith, H. J.; Stranks, S. D.; Tress, W.; Troshin, P. A.; Turkovic, V.; Veenstra, S.; Visoly-Fisher, I.; Walsh, A.; Watson, T.; Xie, H. B.; Yıldırım, R.; Zakeeruddin, S. M.; Zhu, K.; Lira-Cantu, M. Nat. Energy 2020, 5,35.
|
[55] |
Lu, Y.; Yin, W. J.; Peng, K. L.; Wang, K.; Hu, Q.; Selloni, A.; Liu, L. M.; Sui, M. L. Nat. Commun. 2018, 9,2752.
doi: 10.1038/s41467-018-05144-1 pmid: 30013174 |
[1] | Yujie Yang, Yuxiu Gong, Tianhang Gu, Wei-xian Zhang. Progress and Environmental Research Applications of Cryo-Electron Microscopy★ [J]. Acta Chimica Sinica, 2023, 81(8): 990-1001. |
[2] | Quanzheng Deng, Wenting Mao, Lu Han. Structural Solution of Porous Materials on the Mesostructural Scale by Electron Microscopy [J]. Acta Chimica Sinica, 2022, 80(8): 1203-1216. |
[3] | Jing Zhou, Xueying Tian, Binkai Wang, Shasha Zhang, Zonghao Liu, Wei Chen. Application of Low Temperature Atomic Layer Deposition Packaging Technology in OLED and Its Implications for Organic and Perovskite Solar Cell Packaging [J]. Acta Chimica Sinica, 2022, 80(3): 395-422. |
[4] | Wenjun Wu, Yuting Li, Xi Feng, Wenxing Ding. Perovskite Dual-function Passivator: Room Temperature Ionic Liquid Obtained from Mechanochemical Preparation [J]. Acta Chimica Sinica, 2022, 80(11): 1469-1475. |
[5] | Qing-Lin Liu, Bao-Yi Ren, Ya-Guang Sun, Ling-Hai Xie, Wei Huang. Research Progress of Hole Transport Materials Based on Spiro Aromatic-Skeleton in Perovskite Solar Cells [J]. Acta Chimica Sinica, 2021, 79(10): 1181-1196. |
[6] | Yang Ying, Lin Feiyu, Zhu Congtan, Chen Tian, Ma Shupeng, Luo Yuan, Zhu Liu, Guo Xueyi. Research Progress in the Stability of Inorganic Perovskite Solar Cells [J]. Acta Chimica Sinica, 2020, 78(3): 217-231. |
[7] | Wang Menghan, Wan Li, Gao Xuyu, Yuan Wenbo, Fang Junfeng, Tao Youtian, Huang Wei. Synthesis of D-π-A-π-D Type Dopant-Free Hole Transporting Materials and Application in Inverted Perovskite Solar Cells [J]. Acta Chimica Sinica, 2019, 77(8): 741-750. |
[8] | Yang, Ying, Zhu, Congtan, Lin, Feiyu, Chen, Tian, Pan, Dequn, Guo, Xueyi. Research Progress of Inverted Perovskite Solar Cells [J]. Acta Chimica Sinica, 2019, 77(10): 964-976. |
[9] | Yang Ying, Chen Tian, Pan Dequn, Zhang Zheng, Guo Xueyi. Research Progress of Bifacial Solar Cells with Transparent Counter Electrode [J]. Acta Chim. Sinica, 2018, 76(9): 681-690. |
[10] | Zhao Cong, Ma Ying, Wang Yang, Zhou Xue, Li Huizeng, Li Mingzhu, Song Yanlin. Research Progress of Photonic Crystal Solar Cells [J]. Acta Chimica Sinica, 2018, 76(1): 9-21. |
[11] | Rong Genlan, Zhang Xinyi, Xu Yan, Zhang Yuegang. In-situ TEM Study of the Liquid-Phase Reaction of Ag Nanowires with a Sulfur Solution [J]. Acta Chim. Sinica, 2016, 74(12): 980-983. |
[12] | Shi Jianping, Ma Donglin, Zhang Yanfeng, Liu Zhongfan. Controllable Growth of MoS2 on Au Foils and Its Application in Hydrogen Evolution [J]. Acta Chim. Sinica, 2015, 73(9): 877-885. |
[13] | Xue Qifan, Sun Chen, Hu Zhicheng, Huang Fei, Yip Hin-Lap, Cao Yong. Recent Advances in Perovskite Solar Cells: Morphology Control and Interfacial Engineering [J]. Acta Chimica Sinica, 2015, 73(3): 179-192. |
[14] | Guo Xudong, Niu Guangda, Wang Liduo. Chemical Stability Issue and Its Research Process of Perovskite Solar Cells with High Efficiency [J]. Acta Chim. Sinica, 2015, 73(3): 211-218. |
[15] | Zhou You, Gao Faming, Guo Wenfeng, Hou Li. Synthesis and Characterization of Hexagonal Boron Carbonitride Compounds Prepared by Solvothermal Method [J]. Acta Chimica Sinica, 2012, 0(04): 436-440. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||