Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (5): 588-599.DOI: 10.6023/A20120561 Previous Articles Next Articles
Review
蔡莉莉a,b, 王静忆a,b, 朱雪峰a,b,c,*(), 杨维慎a,b
投稿日期:
2020-12-09
发布日期:
2021-01-25
通讯作者:
朱雪峰
作者简介:
蔡莉莉, 博士, 2019年6月于中国科学院大连化学物理研究所获理学博士学位, 目前在中国科学院大连化学物理研究所从事博士后工作, 主要研究方向为催化膜反应器. |
朱雪峰, 研究员, 博士生导师. 2006年12月于中国科学院大连化学物理研究所获理学博士学位. 主要从事用于气体分离的致密陶瓷膜、膜催化及相关电催化方面的研究. |
基金资助:
Lili Caia,b, Jingyi Wanga,b, Xuefeng Zhua,b,c,*(), Weishen Yanga,b
Received:
2020-12-09
Published:
2021-01-25
Contact:
Xuefeng Zhu
About author:
Supported by:
Share
Lili Cai, Jingyi Wang, Xuefeng Zhu, Weishen Yang. Recent Progress on Mixed Conducting Oxygen Transport Membrane Reactors for Water Splitting Reaction[J]. Acta Chimica Sinica, 2021, 79(5): 588-599.
Membrane materials | Thickness/mm | T/℃ | Atmospheres at both sides | Catalysts at water side | FH2/ (mL∙cm-2∙min-1) | Ref. |
---|---|---|---|---|---|---|
La0.3Sr0.7FeO3-δ | 3.00a | 860 | 17%H2O(g);He | 0.005 | [ | |
La0.3Sr0.7FeO3-δ | 3.00a | 860 | 17%H2O(g);CO | 0.015 | [ | |
La0.7Sr0.3Cu0.2Fe0.8O3-δ (LSCF7328) | 0.53 | 900 | 49%H2O(g);80%H2 | Pt/SDC | 1.9 | [ |
LSCF7328 | 0.02 | 900 | 49%H2O(g);80%H2 | — | ≈9 | [ |
LSCF7328 | 0.05 | 900 | 49%H2O(g);80%H2 | Pt/SDC | 11.4 | [ |
BaFe0.9Zr0.1O3-δ | 1.05 | 900 | 49%H2O(g);99.5%CO | — | 3.2 | [ |
Ba0.98Ce0.05Fe0.95O3-δ (BCF) | 0.50 | 900 | 90%H2O(g);80%H2 | Ru/SDC (mRu/mcatalyst=1%) | 10.2 | [ |
BaZrxCoyFezO3-δ (BZCF) | 0.17a | 900 | 75%H2O(g);4%CH4 | — | 2.2 | [ |
La0.9Ca0.1FeO3-δ (LCF-91) | 0.90 | 990 | 50%H2O(g);5%CH4 | — | 0.5 | [ |
SrFeCo0.5Ox(SFC2) | 1.04 | 900 | 49%H2O(g);80%H2 | — | 4.0 | [ |
SrFeCo0.5Ox (SFC2) | 0.02 | 900 | 69%H2O(g);80%H2 | — | 17.4 | [ |
SrCo0.4Fe0.5Zr0.1O3-δ(SCFZ) | — | 900 | 69%H2O(g);6%EtOH | — | 3.4 | [ |
Membrane materials | Thickness/mm | T/℃ | Atmospheres at both sides | Catalysts at water side | FH2/ (mL∙cm-2∙min-1) | Ref. |
---|---|---|---|---|---|---|
La0.3Sr0.7FeO3-δ | 3.00a | 860 | 17%H2O(g);He | 0.005 | [ | |
La0.3Sr0.7FeO3-δ | 3.00a | 860 | 17%H2O(g);CO | 0.015 | [ | |
La0.7Sr0.3Cu0.2Fe0.8O3-δ (LSCF7328) | 0.53 | 900 | 49%H2O(g);80%H2 | Pt/SDC | 1.9 | [ |
LSCF7328 | 0.02 | 900 | 49%H2O(g);80%H2 | — | ≈9 | [ |
LSCF7328 | 0.05 | 900 | 49%H2O(g);80%H2 | Pt/SDC | 11.4 | [ |
BaFe0.9Zr0.1O3-δ | 1.05 | 900 | 49%H2O(g);99.5%CO | — | 3.2 | [ |
Ba0.98Ce0.05Fe0.95O3-δ (BCF) | 0.50 | 900 | 90%H2O(g);80%H2 | Ru/SDC (mRu/mcatalyst=1%) | 10.2 | [ |
BaZrxCoyFezO3-δ (BZCF) | 0.17a | 900 | 75%H2O(g);4%CH4 | — | 2.2 | [ |
La0.9Ca0.1FeO3-δ (LCF-91) | 0.90 | 990 | 50%H2O(g);5%CH4 | — | 0.5 | [ |
SrFeCo0.5Ox(SFC2) | 1.04 | 900 | 49%H2O(g);80%H2 | — | 4.0 | [ |
SrFeCo0.5Ox (SFC2) | 0.02 | 900 | 69%H2O(g);80%H2 | — | 17.4 | [ |
SrCo0.4Fe0.5Zr0.1O3-δ(SCFZ) | — | 900 | 69%H2O(g);6%EtOH | — | 3.4 | [ |
Membrane materials | Ratios of two phases | Thickness/ mm | Atmospheres at both sides | Catalysts at water side | FH2/ (mL∙cm-2∙min-1) | Ref. |
---|---|---|---|---|---|---|
(ZrO2)0.8(TiO2)0.1(Y2O3)0.1 (TiO2-YSZ) | — | 2a | 17%H2O(g);H2/CO2 (PO2 10-7Pa) | — | ≈0.5b | [ |
Cu-GDC | 2/3 (volume ratio) | 0.46 | 49%H2O(g);80%H2 | — | 2.3 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.13 | 49%H2O(g);80%H2 | — | 3.9 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.13 | 49%H2O(g);80%H2 | Ni-GDC (VNi/VGDC=40%) | 6 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.46 | 49%H2O(g);80%H2 | — | 2.4 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.46 | 49%H2 (g);80%H2 | Ni-GDC (VNi/VGDC=40%) | 3.0 | [ |
Gd0.2Ce0.8O1.9-δ- Gd0.08Sr0.88Ti0.95Al0.05O3±δ (GDC-GSTA) | 3/2 (volume ratio) | 1.1 | 25%H2O(g);50%H2 | — | 2.0 | [ |
GDC-GSTA | 3/2 (volume ratio) | 1.1 | 25%H2O(g);50%H2 | NiO-GDC (VNiO/VGDC=50%) | 2.6 | [ |
GDC-GSTA | 3/2 (volume ratio) | 1.1 | 25%H2O(g);100%H2 | NiO-GDC (VNiO/VGDC=50%) | 3.1 | [ |
GDC-GSTA | 3/2 (volume ratio) | 0.025 | 25%H2O(g);- | — | ≈10 | [ |
Ce0.85Sm0.15O1.925- Sm0.6Sr0.4Al0.3Fe0.7O3-δ (SDC-SSAF) | 3/1 (mass ratio) | 0.04 | 90%H2O(g);80%H2 | Ru/SDC (mRu/mcatalyst=1%) | 15.5 | [ |
SDC-SSAF | 3/1 (mass ratio) | 0.40 | 90%H2O(g);80%H2 | Ru/SDC (mRu/mcatalyst=1%) | 5.0 | [ |
Ce0.85Sm0.15O1.925- Sm0.6Sr0.4Cr0.3Fe0.7O3-δ (SDC-SSCF) | 3/1 (mass ratio) | 0.70 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 5.3 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.50 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.5 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.36 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.9 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.36 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 4.6 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.36 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.2 | [ |
Ce0.85Sm0.15O1.925- Sr2Fe1.5Mo0.5O6-δ (SDC-SFM) | 7/3 (mass ratio) | 0.5 | 90% H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.3 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.04 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=2%) | 15.8 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.04 | 90%H2O(g);80%H2 | (Ni+Ru)/SDC (mNi/mSDC=1%, mRu/mSDC=1%) | 19.3 | [ |
Ce0.9Pr0.1O2-δ- Pr0.1Sr0.9Mg0.1Ti0.9O3-δ (CPO-PSMTi) | 3/2 (molar ratio) | 0.70 | 88%H2O(g);40%H2 | — | 0.41 | [ |
Membrane materials | Ratios of two phases | Thickness/ mm | Atmospheres at both sides | Catalysts at water side | FH2/ (mL∙cm-2∙min-1) | Ref. |
---|---|---|---|---|---|---|
(ZrO2)0.8(TiO2)0.1(Y2O3)0.1 (TiO2-YSZ) | — | 2a | 17%H2O(g);H2/CO2 (PO2 10-7Pa) | — | ≈0.5b | [ |
Cu-GDC | 2/3 (volume ratio) | 0.46 | 49%H2O(g);80%H2 | — | 2.3 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.13 | 49%H2O(g);80%H2 | — | 3.9 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.13 | 49%H2O(g);80%H2 | Ni-GDC (VNi/VGDC=40%) | 6 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.46 | 49%H2O(g);80%H2 | — | 2.4 | [ |
Ni-GDC | 2/3 (volume ratio) | 0.46 | 49%H2 (g);80%H2 | Ni-GDC (VNi/VGDC=40%) | 3.0 | [ |
Gd0.2Ce0.8O1.9-δ- Gd0.08Sr0.88Ti0.95Al0.05O3±δ (GDC-GSTA) | 3/2 (volume ratio) | 1.1 | 25%H2O(g);50%H2 | — | 2.0 | [ |
GDC-GSTA | 3/2 (volume ratio) | 1.1 | 25%H2O(g);50%H2 | NiO-GDC (VNiO/VGDC=50%) | 2.6 | [ |
GDC-GSTA | 3/2 (volume ratio) | 1.1 | 25%H2O(g);100%H2 | NiO-GDC (VNiO/VGDC=50%) | 3.1 | [ |
GDC-GSTA | 3/2 (volume ratio) | 0.025 | 25%H2O(g);- | — | ≈10 | [ |
Ce0.85Sm0.15O1.925- Sm0.6Sr0.4Al0.3Fe0.7O3-δ (SDC-SSAF) | 3/1 (mass ratio) | 0.04 | 90%H2O(g);80%H2 | Ru/SDC (mRu/mcatalyst=1%) | 15.5 | [ |
SDC-SSAF | 3/1 (mass ratio) | 0.40 | 90%H2O(g);80%H2 | Ru/SDC (mRu/mcatalyst=1%) | 5.0 | [ |
Ce0.85Sm0.15O1.925- Sm0.6Sr0.4Cr0.3Fe0.7O3-δ (SDC-SSCF) | 3/1 (mass ratio) | 0.70 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 5.3 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.50 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.5 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.36 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.9 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.36 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 4.6 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.36 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.2 | [ |
Ce0.85Sm0.15O1.925- Sr2Fe1.5Mo0.5O6-δ (SDC-SFM) | 7/3 (mass ratio) | 0.5 | 90% H2O(g);80%H2 | Ni/SDC (mNi/mSDC=10%) | 6.3 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.04 | 90%H2O(g);80%H2 | Ni/SDC (mNi/mSDC=2%) | 15.8 | [ |
SDC-SSCF | 3/1 (mass ratio) | 0.04 | 90%H2O(g);80%H2 | (Ni+Ru)/SDC (mNi/mSDC=1%, mRu/mSDC=1%) | 19.3 | [ |
Ce0.9Pr0.1O2-δ- Pr0.1Sr0.9Mg0.1Ti0.9O3-δ (CPO-PSMTi) | 3/2 (molar ratio) | 0.70 | 88%H2O(g);40%H2 | — | 0.41 | [ |
[1] |
Zhu, X. F.; Li, M. R.; Liu, H. Y.; Zhang, T. Y.; Cong, Y.; Yang, W. S. J. Membr. Sci. 2012, 394-395,120.
doi: 10.1016/j.memsci.2011.12.027 |
[2] |
Geffroy, P.-M.; Fouletier, J.; Richet, N.; Chartier, T. Chem. Eng. Sci. 2013, 87,408.
doi: 10.1016/j.ces.2012.10.027 |
[3] |
Sunarso, J.; Baumann, S.; Serra, J. M.; Meulenberg, W. A.; Liu, S.; Lin, Y. S. Diniz da Costa, J.C. J. Membr. Sci. 2008, 320,13.
doi: 10.1016/j.memsci.2008.03.074 |
[4] |
Shao, Z. P.; Yang, W. S.; Cong, Y.; Dong, H.; Tong, J. H.; Xiong, G. X. J. Membr. Sci. 2000, 172,177.
doi: 10.1016/S0376-7388(00)00337-9 |
[5] |
Tan, X. Y.; Liu, N.; Meng, B.; Liu, S. M. J. Membr. Sci. 2011, 378,308.
doi: 10.1016/j.memsci.2011.05.012 |
[6] |
Zeng, P. Y.; Ran, R.; Chen, Z. H.; Gu, H. X.; Shao, Z. P.; Liu, S. M. AIChE J. 2007, 53,3116.
doi: 10.1002/(ISSN)1547-5905 |
[7] |
Zhu, Y.; Cai, L. L.; Li, W. P.; Cao, Z. W.; Li, H. B.; Jiang, H. Q.; Zhu, X. F.; Yang, W. S. AIChE J. 2020, 66,e16291.
|
[8] |
Wang, S.; Shi, L.; Xie, Z. A.; Wang, H. Q.; Lan, Q.; He, Y.; Yan, D.; Zhang, X.; Luo, H. X. Chin. Sci. Bull. 2019, 64,1651. (in Chinese).
doi: 10.1360/N972018-01197 |
( 王舒, 石磊, 谢沚昂, 王好奇, 蓝琪, 何缘, 严冬, 张杏, 罗惠霞, 科学通报, 2019, 64,1651.)
|
|
[9] |
Shi, L.; Wang, S.; Lu, T. N.; He, Y.; Yan, D.; Lan, Q.; Xie, Z. A.; Wang, H. Q.; Li, M.-R.; Caro, J.; Luo, H. X. J. Alloy. Compd. 2019, 806,500.
doi: 10.1016/j.jallcom.2019.07.281 |
[10] |
Luo, H. X.; Klande, T.; Cao, Z. W.; Liang, F. Y.; Wang, H. H.; Caro, J. J. Mater. Chem. A 2014, 2,7780.
doi: 10.1039/C3TA14870J |
[11] |
Yang, Z. B.; Ding, W. Z.; Zhang, Y. Y.; Lu, X. G.; Zhang, Y. W.; Shen, P. J. Int. J. Hydrogen Energy 2010, 35,6239.
doi: 10.1016/j.ijhydene.2009.07.103 |
[12] |
Zhang, Y. W.; Liu, J.; Ding, W. Z.; Lu, X. G. Fuel 2011, 90,324.
doi: 10.1016/j.fuel.2010.08.027 |
[13] |
Zhang, G. R.; Jin, W. Q.; Xu, N. P. Energy 2018, 4,848.
|
[14] |
Zhu, X. F.; Yang, W. S. Adv. Mater. 2019, 31,1902547.
doi: 10.1002/adma.v31.50 |
[15] |
Zhu, X. F.; Yang, W. S. AIChE J. 2008, 54,665.
doi: 10.1002/(ISSN)1547-5905 |
[16] |
Zhu, X. F.; Liu, Y.; Cong, Y.; Yang, W. S. Solid State Ionics 2013, 253,57.
doi: 10.1016/j.ssi.2013.08.040 |
[17] |
Luo, H. X.; Jiang, H. Q.; Klande, T.; Cao, Z. W.; Liang, F. Y.; Wang, H. H.; Caro, J. Chem. Mater. 2012, 24,2148.
doi: 10.1021/cm300710p |
[18] |
Zhu, X. F.; Cong, Y.; Yang, W. S. J. Membr. Sci. 2006, 283,38.
doi: 10.1016/j.memsci.2006.06.010 |
[19] |
Zhu, X. F.; Wang, H. H.; Cong, Y.; Yang, W. S. Catal. Lett. 2006, 111,179.
doi: 10.1007/s10562-006-0145-4 |
[20] |
He, Z. Y.; Li, C. Q.; Chen, C. S.; Tong, Y. C.; Luo, T.; Zhan, Z. L. J. Power Sources 2018, 392,200.
doi: 10.1016/j.jpowsour.2018.04.085 |
[21] |
Cao, Z. W.; Jiang, H. Q.; Luo, H. X.; Baumann, S.; Meulenberg, W. A.; Assmann, J.; Mleczko, L.; Liu, Y.; Caro, J. Angew. Chem. Int. Ed. 2013, 52,13794.
doi: 10.1002/anie.201307935 |
[22] |
Jiang, H. Q.; Cao, Z. W.; Schirrmeister, S.; Schiestel, T.; Caro, J. Angew. Chem. Int. Ed. 2010, 49,5656.
doi: 10.1002/anie.v49:33 |
[23] |
Wang, H. H.; Cong, Y.; Yang, W. S. Chem. Commun. 2002, 14,1468.
|
[24] |
Schucker, R. C.; Dimitrakopoulos, G.; Derrickson, K.; KopećK. K.; Alahmadi, F.; Johnson, J. R.; Shao, L.; Ghoniem, A. F. Ind. Eng. Chem. Res. 2019, 58,7989.
doi: 10.1021/acs.iecr.9b00974 |
[25] |
Préz-Ramírez, J.; Vigeland, B. Angew. Chem. Int. Ed. 2005, 44,1112.
doi: 10.1002/anie.v44:7 |
[26] |
Wang, H. B.; Gopalan, S.; Pal, U. B. Electrochim. Acta 2011, 56,6989.
doi: 10.1016/j.electacta.2011.06.009 |
[27] |
Li, W. P.; Cao, Z. W.; Cai, L. L.; Zhang, L. X.; Zhu, X. F.; Yang, W. S. Energy Environ. Sci. 2017, 10,101.
doi: 10.1039/C6EE02967A |
[28] |
Jiang, H. Q.; Wang, H. H.; Werth, S.; Schiestel, T.; Caro, J. Angew. Chem. Int. Ed. 2008, 47,9341.
doi: 10.1002/anie.200803899 |
[29] |
Jiang, H. Q.; Wang, H. H.; Liang, F. Y.; Werth, S.; Schirrmeister, S.; Schiestel, T.; Caro, J. Catal. Today 2010, 156,187.
doi: 10.1016/j.cattod.2010.02.027 |
[30] |
Wu, X.-Y.; Cai, L. L.; Zhu, X. F.; Ghoniem, A. F.; Yang, W. S. J. Adv. Manuf. Process. 2020, 2,e10059.
|
[31] |
Wu, X.-Y.; Ghoniem, A. F.; Uddi, M. AIChE J. 2016, 62,4427.
doi: 10.1002/aic.15518 |
[32] |
Jia, L. J.; He, G. H.; Zhang, Y.; Caro, J.; Jiang, H. Q. Angew. Chem. Int. Ed. 2021, 60,5204.
doi: 10.1002/anie.v60.10 |
[33] |
Fang, W.; Steinbach, F.; Cao, Z. W.; Zhu, X. F.; Feldhoff, A. Angew. Chem. Int. Ed. 2016, 55,8648.
doi: 10.1002/anie.201603528 |
[34] |
Li, W. P.; Zhu, X. F.; Cao, Z. W.; Wang, W. P.; Yang, W. S. Int. J. Hydrogen Energy 2015, 40,3452.
doi: 10.1016/j.ijhydene.2014.10.080 |
[35] |
Liang, W. Y.; Zhou, H. Y.; Caro, J.; Jiang, H. Q. Int. J. Hydrogen Energy 2018, 43,14478.
doi: 10.1016/j.ijhydene.2018.06.008 |
[36] |
Li, W. P.; Zhu, X. F.; Chen, S. G.; Yang, W. S. Angew. Chem. Int. Ed. 2016, 55,8566.
doi: 10.1002/anie.201602207 |
[37] |
Nikolaidis, P.; Poullikkas, A. Renew. Sust. Energ. Rev. 2017, 67,597.
doi: 10.1016/j.rser.2016.09.044 |
[38] |
Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. Catal. Today 2009, 139,244.
doi: 10.1016/j.cattod.2008.08.039 |
[39] |
Dincer, I. Int. J. Hydrogen Energy 2012, 37,1954.
doi: 10.1016/j.ijhydene.2011.03.173 |
[40] |
Liang, W. Y.; Cao, Z. W.; He, G. H.; Caro, J.; Jiang, H. Q. ACS Sustain. Chem. Eng. 2017, 5,8657.
doi: 10.1021/acssuschemeng.7b01305 |
[41] |
Thursfield, A.; Murugan, A.; Franca, R.; Metcalfe, I. S. Energy Environ. Sci. 2012, 5,7421.
doi: 10.1039/c2ee03470k |
[42] |
Kogan, A. Int. J. Hydrogen Energy 1997, 22,481.
doi: 10.1016/S0360-3199(96)00125-5 |
[43] |
Kogan, A. Int. J. Hydrogen Energy 2000, 25,1043.
doi: 10.1016/S0360-3199(00)00024-0 |
[44] |
Steinfeld, A. Sol. Energy 2005, 78,603.
doi: 10.1016/j.solener.2003.12.012 |
[45] |
Miller, J.; Allendorf, M.; Diver, R.; Evans, L.; Siegel, N.; Stuecker, J. J. Mater. Sci. 2008, 43,4714.
doi: 10.1007/s10853-007-2354-7 |
[46] |
Funk, J. Int. J. Hydrogen Energy 2001, 26,185.
doi: 10.1016/S0360-3199(00)00062-8 |
[47] |
Naito, H.; Arashi, H. Solid State Ionics 1995, 79,366.
doi: 10.1016/0167-2738(95)00089-O |
[48] |
Song, S.-J.; Moon, J.-H.; Ryu, H.-W.; Lee, T.-H.; Dorris, S. E.; Balachandran, U. J. Ceram. Process. Res. 2008, 9,123.
|
[49] |
Li, W. P.; Cao, Z. W.; Zhu, X. F.; Yang, W. S. AIChE J. 2017, 63,1278.
doi: 10.1002/aic.v63.4 |
[50] |
Cai, L. L.; Hu, S. Q.; Cao, Z. W.; Li, H. B.; Zhu, X. F.; Yang, W. S. AIChE J. 2019, 65,1088.
doi: 10.1002/aic.v65.3 |
[51] |
Cai, L. L.; Zhu, Y.; Cao, Z. W.; Li, W. P.; Li, H. B.; Zhu, X. F.; Yang, W. S. J. Membr. Sci. 2020, 594,117463.
doi: 10.1016/j.memsci.2019.117463 |
[52] |
Cai, L. L.; Liu, W.; Cao, Z. W.; Li, H. B.; Cong, Y.; Zhu, X. F.; Yang, W. S. J. Membr. Sci. 2020, 599,117702.
doi: 10.1016/j.memsci.2019.117702 |
[53] |
Cai, L. L.; Wu, X.-Y.; Zhu, X. F.; Ghoniem, A. F.; Yang, W. S. AIChE J. 2020, 66,e16427.
|
[54] |
Liu, Y. T.; Tan, X. Y.; Li, K. Catal. Rev.-Sci. Eng. 2006, 48,145.
doi: 10.1080/01614940600631348 |
[55] |
Sunarso, J.; Hashim, S. S.; Zhu, N.; Zhou, W. Prog. Energy Combust. Sci. 2017, 61,57.
doi: 10.1016/j.pecs.2017.03.003 |
[56] |
Plazaola, A. A.; Labella, A. C.; Liu, Y. L.; Porras, N. B.; Tanaka, D. A.P.; Van Sint Annaland, M.; Gallucci, F. Processes 2019, 7,128.
doi: 10.3390/pr7030128 |
[57] |
Hashim, S. M.; Mohamed, A. R.; Bhatia, S. Adv. Colloid Interface Sci. 2010, 160,88.
doi: 10.1016/j.cis.2010.07.007 |
[58] |
Zhang, C.; Sunarso, J.; Liu, S. M. Chem. Soc. Rev. 2017, 46,2941.
doi: 10.1039/c6cs00841k pmid: 28436504 |
[59] |
Chen, C. S.; Boukamp, B. A.; Bouwmeester, H. J.M.; Cao, G. Z.; Kruidhof, H.; Winnubst, A. J.A. Solid State Ionics 1995, 76,23.
doi: 10.1016/0167-2738(94)00253-O |
[60] |
Kim, J.; Lin, Y. S. J. Membr. Sci. 2000, 167,123.
doi: 10.1016/S0376-7388(99)00273-2 |
[61] |
Luo, H. X.; Jiang, H. Q.; Efimov, K.; Wang, H. H.; Caro, J. AIChE J. 2011, 57,2738.
doi: 10.1002/aic.v57.10 |
[62] |
Garcia-Fayos, J.; Balaguer, M.; Serra, J. M. ChemSusChem 2015, 8,4242.
doi: 10.1002/cssc.201500951 pmid: 26586419 |
[63] |
Li, W.; Liu, J. J.; Chen, C. S. J. Membr. Sci. 2009, 340,266.
doi: 10.1016/j.memsci.2009.05.052 |
[64] |
Bi, X. X.; Meng, X. X.; Liu, P. Y.; Yang, N. T.; Zhu, Z. H.; Ran, R.; Liu, S. M. J. Membr. Sci. 2017, 522,91.
doi: 10.1016/j.memsci.2016.09.008 |
[65] |
Cao, Z. W.; Zhu, X. F.; Li, W. P.; Xu, B.; Yang, L. N.; Zhu, X. F. Mater. Lett. 2015, 147,88.
doi: 10.1016/j.matlet.2015.02.033 |
[66] |
Zhu, X. F.; Liu, H. Y.; Cong, Y.; Yang, W. S. Chem. Commun. 2012, 48,251.
doi: 10.1039/C1CC16631J |
[67] |
Fang, W.; Gao, J. F.; Chen, C. S. Ceram. Int. 2013, 39,7269.
doi: 10.1016/j.ceramint.2013.02.018 |
[68] |
Wang, Z. T.; Sun, W. P.; Zhu, Z. W.; Liu, T.; Liu, W. ACS Appl. Mater. Interfaces 2013, 5,11038.
doi: 10.1021/am403272z |
[69] |
Luo, H. X.; Efimov, K.; Jiang, H. Q.; Feldhoff, A.; Wang, H. H.; Caro, J. Angew. Chem. Int. Ed. 2011, 50,759.
|
[70] |
Xue, J.; Liao, Q.; Wei, Y. Y.; Li, Z.; Wang, H. H. J. Membr. Sci. 2013, 443,124.
doi: 10.1016/j.memsci.2013.04.067 |
[71] |
Chen, T.; Zhao, H. L.; Xie, Z. X.; Xu, N. S.; Lu, Y. Ionics 2015, 21,1683.
doi: 10.1007/s11581-014-1327-5 |
[72] |
Chen, T.; Zhao, H. L.; Xie, Z. X.; Wang, J.; Lu, Y.; Xu, N. S. J. Power Sources 2013, 223,289.
doi: 10.1016/j.jpowsour.2012.09.018 |
[73] |
Du, Z. H.; Ma, Y. H.; Zhao, H. L.; Li, K.; Lu, Y. J. Membr. Sci. 2019, 574,243.
doi: 10.1016/j.memsci.2018.12.083 |
[74] |
Zhu, X. F.; Yang, W. S. Chin. J. Catal. 2009, 30,801. (in Chinese).
|
( 朱雪峰, 杨维慎, 催化学报, 2009, 30,801.)
|
|
[75] |
Fang, W.; Liang, F. Y.; Cao, Z. W.; Steinbach, F.; Feldhoff, A. Angew. Chem. Int. Ed. 2015, 54,4847.
doi: 10.1002/anie.201411963 |
[76] |
Evdou, A.; Nalbandian, L.; Zaspalis, V. T. J. Membr. Sci. 2008, 325,704.
doi: 10.1016/j.memsci.2008.08.042 |
[77] |
Jiang, H. Q.; Liang, F. Y.; Czuprat, O.; Efimov, K.; Feldhoff, A.; Schirrmeister, S.; Schiestel, T.; Wang, H. H.; Caro, J. Chem 2010, 16,7898.
|
[78] |
Lee, T. H.; Park, C. Y.; Dorris, S. E.; Balachandran, U. ECS Trans. 2008, 13,379.
doi: 10.1149/1.3050408 |
[79] |
Balachandran, U.; Lee, T. H.; Dorris, S. E. Int. J. Hydrogen Energy 2007, 32,451.
doi: 10.1016/j.ijhydene.2006.05.010 |
[80] |
Franca, R. V.; Thursfield, A.; Metcalfe, I. S. J. Membr. Sci. 2012, 389,173.
doi: 10.1016/j.memsci.2011.10.027 |
[81] |
Park, C. Y.; Azzarello, F. V.; Jacobson, A. J. J. Mater. Chem. 2006, 16,3624.
doi: 10.1039/B609872J |
[82] |
Park, C. Y.; Lee, T. H.; Dorris, S. E.; Balachandran, U. ECS Trans. 2008, 13,393.
|
[83] |
Park, C. Y.; Lee, T. H.; Dorris, S. E.; Balachandran, U. Int. J. Hydrogen Energy 2010, 35,4103.
doi: 10.1016/j.ijhydene.2010.02.025 |
[84] |
Park, C. Y.; Lee, T. H.; Dorris, S. E.; Balachandran, U. Int. J. Hydrogen Energy 2013, 38,6450.
doi: 10.1016/j.ijhydene.2013.02.119 |
[85] |
Balachandran, U.; Lee, T. H.; Wang, S.; Dorris, S. E. Int. J. Hydrogen Energy 2004, 29,291.
doi: 10.1016/S0360-3199(03)00134-4 |
[86] |
Hong, J.; Wang, H.; Gopalan, S.; Pal, U. B. ECS Trans. 2008, 6,1.
|
[87] |
Wang, H.; Gopalan, S.; Pal, U. B. Electrochim. Acta 2011, 56,6989.
doi: 10.1016/j.electacta.2011.06.009 |
[88] |
Patrakeev, M. V.; Bahteeva, J. A.; Mitberg, E. B.; Leonidov, I. A.; Kozhevnikov, V. L.; Poeppelmeier, K. R. J. Solid State Chem. 2003, 172,219.
doi: 10.1016/S0022-4596(03)00040-9 |
[89] |
Tsipis, E. V.; Patrakeev, M. V.; Kharton, V. V.; Yaremchenko, A. A.; Mather, G. C.; Shaula, A. L.; Leonidov, I. A.; Kozhevnikov, V. L.; Frade, J. R. Solid State Sci. 2005, 7,355.
doi: 10.1016/j.solidstatesciences.2005.01.001 |
[90] |
Patrakeeva, M. V.; Leonidov, I. A.; Kozhevnikov, V. L.; Kharton, V. V. Solid State Sci. 2004, 6,907.
doi: 10.1016/j.solidstatesciences.2004.05.002 |
[91] |
Leonidov, I. A.; Kozhevnikov, V. L.; Patrakeev, M. V.; Mitberg, E. B.; Poeppelmeier, K. R. Solid State Ionics 2001, 144,361.
doi: 10.1016/S0167-2738(01)00978-X |
[92] |
Kharton, V. V.; Yaremchenko, A. A.; Shaula, A. L.; Viskup, A. P.; Marques, F. M.B.; Frade, J. R.; Naumovich, E. N.; Casanova, J. R.; Marozau, I. P. Defect Diffus. Forum 2004, 226-228,141.
doi: 10.4028/www.scientific.net/DDF.226-228 |
[93] |
Kozhevnikov, V. L.; Leonidov, I. A.; Bahteeva, J. A.; Patrakeev, M. V.; Mitberg, E. B.; Poeppelmeier, K. R. Chem. Mater. 2004, 16,5014.
doi: 10.1021/cm031084o |
[94] |
Fowler, D. E.; Haag, J. M.; Boland, C.; Bierschenk, D. M.; Barnett, S. A.; Poeppelmeier, K. R. Chem. Mater. 2014, 26,3113.
doi: 10.1021/cm500423n |
[95] |
Haag, J. M.; Barnett, S. A.; Richardson Jr., J. W.; Poeppelmeier, K.R. Chem. Mater. 2010, 22,3283.
doi: 10.1021/cm100609e |
[96] |
Yoo, J.; Kim, S.; Choi, H.; Rhim, Y.; Lim, J.; Lee, S.; Jacobson, A. J. J. Electroceram. 2011, 26,56.
doi: 10.1007/s10832-010-9627-2 |
[97] |
Cai, L. L.; Li, W. P.; Cao, Z. W.; Zhu, X. F.; Yang, W. S. J. Membr. Sci. 2016, 520,607.
doi: 10.1016/j.memsci.2016.08.012 |
[98] |
Li, W. P.; Cao, Z. W.; Zhu, X. F.; Yang, W. S. J. Membr. Sci. 2019, 573,370.
doi: 10.1016/j.memsci.2018.12.005 |
[99] |
Midilli, A.; Ay, M.; Dincer, I.; Rosen, M. A. Renew. Sust. Energ. Rev. 2005, 9,255.
doi: 10.1016/j.rser.2004.05.003 |
[100] |
Balat, M. Int. J. Hydrogen Energy 2008, 33,4013.
doi: 10.1016/j.ijhydene.2008.05.047 |
[101] |
Wiltowski, T.; Mondal, K.; Campen, A.; Dasgupta, D.; Konieczny, A. Int. J. Hydrogen Energy 2008, 33,293.
doi: 10.1016/j.ijhydene.2007.07.053 |
[102] |
Schulze-Küppers, F.; Baumann, S.; Meulenberg, W. A.; Stöver, D.; Buchkremer, H.-P. J. Membr. Sci. 2013, 433,121.
doi: 10.1016/j.memsci.2013.01.028 |
[103] |
Kaiser, A.; Foghmoes, S. P.; Pećanac, G.; Malzbender, J.; Chatzichristodoulou, C.; Glasscock, J. A.; Ramachandran, D.; Ni, D. W.; Esposito, V.; Søgaard, M.; Hendriksen, P. V. J. Membr. Sci. 2016, 513,85.
doi: 10.1016/j.memsci.2016.04.016 |
[104] |
Baumann, S.; Schulze-Küppers, F.; Roitsch, S.; Betz, M.; Zwick, M.; Pfaff, E. M.; Meulenberg, W. A.; Mayer, J.; Stöver, D. J. Membr. Sci. 2010, 359,102.
doi: 10.1016/j.memsci.2010.02.002 |
[105] |
Unije, U.; Mücke, R.; Niehoff, P.; Baumann, S.; Vaßen, R.; Guillon, O. J. Membr. Sci. 2017, 524,334.
doi: 10.1016/j.memsci.2016.10.037 |
[106] |
Schulze-Küppersa, F.; Unije, U. V.; Blank, H.; Balaguer, M.; Baumann, S.; Mücke, R.; Meulenberg, W. A. J. Membr. Sci. 2018, 564,218.
doi: 10.1016/j.memsci.2018.07.028 |
[107] |
Cai, L. L.; Cao, Z. W.; Zhu, X. F.; Yang, W. S. Green Chem. Eng. doi. org/10. 1016/j.gce.2020.11.003.
|
[108] |
Zhu, N.; Dong, X. L.; Liu, Z. K.; Zhang, G. R.; Jin, W. Q.; Xu, N. P. Chem. Commun. 2012, 48,7137.
doi: 10.1039/c2cc30184a |
[109] |
Zhou, H. Y.; Liang, W. Y.; Liang, F. Y.; Jiang, H. Q. Catal. Today 2019, 331,2.
doi: 10.1016/j.cattod.2017.09.004 |
[110] |
Li, W. P.; Cao, Z. W.; Li, H. B.; Zhu, X. F.; Yang, W. S. Int. J. Hydrogen Energy 2019, 44,4218.
doi: 10.1016/j.ijhydene.2018.12.182 |
[1] | Yaning Li, Xiaoyan Wang, Yong Tang. The Regulation of Stereoselectivity in Radical Polymerization★ [J]. Acta Chimica Sinica, 2024, 82(2): 213-225. |
[2] | Ping Li, Qiyu Yang, Jing Zeng, Ran Zhang, Qiuyan Chen, Fei Yan. Effect of Fluorine Doping on the Performance of Reversible Solid Oxide Cells and Related Kinetic Studies [J]. Acta Chimica Sinica, 2024, 82(1): 36-45. |
[3] | Guoqing Cui, Yiyang Hu, Yingjie Lou, Mingxia Zhou, Yuming Li, Yajun Wang, Guiyuan Jiang, Chunming Xu. Research Progress on the Design, Preparation and Properties of Catalysts for CO2 Hydrogenation to Alcohols [J]. Acta Chimica Sinica, 2023, 81(8): 1081-1100. |
[4] | Xinpu Fu, Xiuling Wang, Weiwei Wang, Rui Si, Chunjiang Jia. Fabrication and Mechanism Study of Clustered Au/CeO2 Catalyst for the CO Oxidation Reaction★ [J]. Acta Chimica Sinica, 2023, 81(8): 874-883. |
[5] | Wei Hou, Yancai Yao, Lizhi Zhang. Advances in Electrochemical Reductive Removal of Oxyanions in Water★ [J]. Acta Chimica Sinica, 2023, 81(8): 979-989. |
[6] | Jianchuan Liu, Cuiyan Li, Yaozu Liu, Yujie Wang, Qianrong Fang. Highly-Stable Two-Dimensional Bicarbazole-based sp2-Carbon-conjugated Covalent Organic Framework for Efficient Electrocatalytic Oxygen Reduction★ [J]. Acta Chimica Sinica, 2023, 81(8): 884-890. |
[7] | Xinhong Cai, Jianzhong Chen, Wanbin Zhang. Development of Construction of Chiral C—X Bonds through Nickel Catalyzed Asymmetric Hydrogenation★ [J]. Acta Chimica Sinica, 2023, 81(6): 646-656. |
[8] | Tiancheng Zhao, Hongyu Jiang, Kun Zhang, Yifan Xu, Xinyue Kang, Jiancheng Xu, Xufeng Zhou, Peining Chen, Huisheng Peng. Continuous Preparation of High-performing Carbon Nanotube Fibers Based on Cycloalkane/ethanol Mixing Carbon Source [J]. Acta Chimica Sinica, 2023, 81(6): 565-571. |
[9] | Zihao Wang, Min Chen, Changle Chen. Catalytic Synthesis of Polyolefin Elastomer Using Unsymmetrical α-Diimine Nickel Catalyst★ [J]. Acta Chimica Sinica, 2023, 81(6): 559-564. |
[10] | Huang Jiapian, Liu Fei, Wu Jie. Recent Advances in the Transformation of Difluorocyclopropenes★ [J]. Acta Chimica Sinica, 2023, 81(5): 520-532. |
[11] | Liu Lujie, Zhang Jian, Wang Liang, Xiao Fengshou. Heterogeneous Catalysts for Selective Hydrogenolysis of Biomass-derived Polyols★ [J]. Acta Chimica Sinica, 2023, 81(5): 533-547. |
[12] | Lan Jiang, Yiqiu Fan, Xiaoxin Zhang, Yan Pei, Shirun Yan, Minghua Qiao, Kangnian Fan, Baoning Zong. Effect of W Content on Structure and Catalytic Performance of Pt/GaWZrOx Catalysts in Glycerol Selective Hydrogenolysis [J]. Acta Chimica Sinica, 2023, 81(3): 231-238. |
[13] | Bin Xu, Xiuzhi Wei, Jiangmin Sun, Jianguo Liu, Longlong Ma. In-situ Synthesis of Nitrogen-doped Graphene Layer Encapsulated Palladium Nanoparticles for Highly Selective Hydrogenation of Vanillin [J]. Acta Chimica Sinica, 2023, 81(3): 239-245. |
[14] | Jian Liu, Jinhua Ou, Zeping Li, jingyi Jiang, Rongtao Liang, Wenjie Zhang, kaijian Liu, Yu Han. Efficient Catalytic Hydrogenation of Nitroaromatic Using Cobalt Single-atom Derived from Metal-organic Framework [J]. Acta Chimica Sinica, 2023, 81(12): 1701-1707. |
[15] | Guan-Wen Yang, Guang-Peng Wu. Modular Bifunctional Organoboron-ammonium/phosphonium Catalysts: Design and Catalytic Performance★ [J]. Acta Chimica Sinica, 2023, 81(11): 1551-1565. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||