Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (4): 510-516.DOI: 10.6023/A21110533 Previous Articles Next Articles
Article
龚雪a, 马新国a,b,*(), 万锋达a, 段汪洋a, 杨小玲a,b, 朱进容a,b
投稿日期:
2021-11-24
发布日期:
2022-04-28
通讯作者:
马新国
基金资助:
Xue Gonga, Xinguo Maa,b(), Fengda Wana, Wangyang Duana, Xiaoling Yanga,b, Jinrong Zhua,b
Received:
2021-11-24
Published:
2022-04-28
Contact:
Xinguo Ma
Supported by:
Share
Xue Gong, Xinguo Ma, Fengda Wan, Wangyang Duan, Xiaoling Yang, Jinrong Zhu. Study on the Electronic Structure and Optical Properties of Two-dimensional Monolayer MoSi2X4 (X=N, P, As)[J]. Acta Chimica Sinica, 2022, 80(4): 510-516.
Structure | Model | a/nm | b/nm | Eg/eV | Bond length/nm | Bond angle/(°) | Cohesive energy/(eV•atom–1) | |||
---|---|---|---|---|---|---|---|---|---|---|
l1 | l2 | θ1 | θ2 | |||||||
MoSi2N4 | M1 | 0.290 | 0.290 | 1.783 | 0.209 | 0.175 | 73.36 | 106.61 | –5.29 | |
0.175 | ||||||||||
M2 | 0.289 | 0.289 | 2.064 | 0.209 | 0.175 | 74.08 | 107.01 | –5.28 | ||
0.175 | ||||||||||
MoSi2P4 | M1 | 0.347 | 0.347 | 0.657 | 0.245 | 0.224 | 70.44 | 116.96 | –3.30 | |
0.225 | ||||||||||
M2 | 0.346 | 0.346 | 0.889 | 0.245 | 0.226 | 70.99 | 117.34 | –3.29 | ||
0.225 | ||||||||||
MoSi2As4 | M1 | 0.365 | 0.366 | 0.559 | 0.257 | 0.236 | 69.97 | 117.94 | –2.94 | |
0.237 | ||||||||||
M2 | 0.364 | 0.365 | 0.709 | 0.257 | 0.240 | 70.26 | 116.85 | –2.93 | ||
0.238 |
Structure | Model | a/nm | b/nm | Eg/eV | Bond length/nm | Bond angle/(°) | Cohesive energy/(eV•atom–1) | |||
---|---|---|---|---|---|---|---|---|---|---|
l1 | l2 | θ1 | θ2 | |||||||
MoSi2N4 | M1 | 0.290 | 0.290 | 1.783 | 0.209 | 0.175 | 73.36 | 106.61 | –5.29 | |
0.175 | ||||||||||
M2 | 0.289 | 0.289 | 2.064 | 0.209 | 0.175 | 74.08 | 107.01 | –5.28 | ||
0.175 | ||||||||||
MoSi2P4 | M1 | 0.347 | 0.347 | 0.657 | 0.245 | 0.224 | 70.44 | 116.96 | –3.30 | |
0.225 | ||||||||||
M2 | 0.346 | 0.346 | 0.889 | 0.245 | 0.226 | 70.99 | 117.34 | –3.29 | ||
0.225 | ||||||||||
MoSi2As4 | M1 | 0.365 | 0.366 | 0.559 | 0.257 | 0.236 | 69.97 | 117.94 | –2.94 | |
0.237 | ||||||||||
M2 | 0.364 | 0.365 | 0.709 | 0.257 | 0.240 | 70.26 | 116.85 | –2.93 | ||
0.238 |
Structure | Model | $m_{e}^{*}$/m0 | $m_{h}^{*}$/m0 | μ0/m0 | Work function/eV |
---|---|---|---|---|---|
MoSi2N4 | M1 | 0.461 | 0.644 | 0.269 | 4.766 |
M2 | 0.462 | 0.798 | 0.293 | 4.787 | |
MoSi2P4 | M1 | 0.615 | 0.799 | 0.348 | 4.705 |
M2 | 0.702 | 0.778 | 0.369 | 4.805 | |
MoSi2As4 | M1 | 0.625 | 0.606 | 0.308 | 4.700 |
M2 | 0.614 | 0.806 | 0.349 | 4.778 | |
MoS2 | 0.457 | 0.779 | 0.288 | 5.149 |
Structure | Model | $m_{e}^{*}$/m0 | $m_{h}^{*}$/m0 | μ0/m0 | Work function/eV |
---|---|---|---|---|---|
MoSi2N4 | M1 | 0.461 | 0.644 | 0.269 | 4.766 |
M2 | 0.462 | 0.798 | 0.293 | 4.787 | |
MoSi2P4 | M1 | 0.615 | 0.799 | 0.348 | 4.705 |
M2 | 0.702 | 0.778 | 0.369 | 4.805 | |
MoSi2As4 | M1 | 0.625 | 0.606 | 0.308 | 4.700 |
M2 | 0.614 | 0.806 | 0.349 | 4.778 | |
MoS2 | 0.457 | 0.779 | 0.288 | 5.149 |
[1] |
Muñoz, V.; Casado, C.; Suárez, S.; Sánchez, B.; Marugán, J. Catal. Today 2019, 326, 82.
doi: 10.1016/j.cattod.2018.09.001 |
[2] |
Mo, J. H.; Zhang, Y. P.; Xu, Q. J.; Lamson, J. J.; Zhao, R. Y. Atmos. Environ. 2009, 43, 2229.
doi: 10.1016/j.atmosenv.2009.01.034 |
[3] |
Wang, S. B.; Ang, H. M.; Tade, M. O. Environ. Int. 2007, 33, 694.
doi: 10.1016/j.envint.2007.02.011 |
[4] |
Chen, Q.; Kuang, Q.; Xie, Z. X. Acta Chim. Sinica 2021, 79, 10. (in Chinese)
doi: 10.6023/A20080384 |
(陈钱, 匡勤, 谢兆雄, 化学学报, 2021, 79, 10.)
doi: 10.6023/A20080384 |
|
[5] |
Wang, R. Z.; Zou, Y. J.; Hong, S.; Xu, M. K.; Ling, L. Acta Chim. Sinica 2021, 79, 932. (in Chinese)
doi: 10.6023/A21030118 |
(王瑞兆, 邹云杰, 洪晟, 徐铭楷, 凌岚, 化学学报, 2021, 79, 932.)
doi: 10.6023/A21030118 |
|
[6] |
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
doi: 10.1038/nature04969 |
[7] |
Liu, H.; Li, J. Z.; Li, P.; Zhang, G. Z.; Xu, X.; Zhang, H.; Qiu, L. F.; Qi, H.; Duo, S. W. Acta Chim. Sinica 2021, 79, 1293. (in Chinese)
doi: 10.6023/A21060265 |
(刘欢, 李京哲, 李平, 张广智, 徐迅, 张豪, 邱灵芳, 齐晖, 多树旺, 化学学报, 2021, 79, 1293.)
doi: 10.6023/A21060265 |
|
[8] |
Karlicky, F.; Kasibhatta, K. R. D.; Otyepka, M.; Zboril, R. ACS Nano 2013, 7, 6434.
doi: 10.1021/nn4024027 |
[9] |
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
pmid: 15499015 |
[10] |
Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192.
doi: 10.1038/nature11458 |
[11] |
Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457, 706.
doi: 10.1038/nature07719 |
[12] |
Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.
doi: 10.1021/nl0731872 |
[13] |
Niu, P.; Zhang, L.; Liu, G.; Cheng, H. M. Adv. Funct. Mater. 2012, 22, 4763.
doi: 10.1002/adfm.201200922 |
[14] |
Zhou, L.; Xia, T. Y.; Cao, T. Q.; Wang, L. R.; Chen, Y. S.; Li, S. F.; Wang, R. M.; Guo, H. Z. J. Alloys Compd. 2020, 818, 152909.
doi: 10.1016/j.jallcom.2019.152909 |
[15] |
Ye, G. L.; Gong, Y. J.; Lin, J. H.; Li, B.; He, Y. M.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Nano Lett. 2016, 16, 1097.
doi: 10.1021/acs.nanolett.5b04331 |
[16] |
Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. J. Am. Chem. Soc. 2008, 130, 7176.
doi: 10.1021/ja8007825 pmid: 18473462 |
[17] |
Laursen, A. B.; Kegnæs, S.; Dahla, S.; Chorkendorff, I. Energy Environ. Sci. 2012, 5, 5577.
doi: 10.1039/c2ee02618j |
[18] |
Li, Y. G.; Li, Y. L.; Araujo, C. M.; Luo, W.; Ahuja, R. Catal. Sci. Technol. 2013, 3, 2214.
doi: 10.1039/c3cy00207a |
[19] |
Quinn, M. D. J.; Ho, N. H.; Notley, S. M. ACS Appl. Mater. Interfaces 2013, 5, 12751.
doi: 10.1021/am404161k |
[20] |
Hong, Y. L.; Liu, Z. B.; Wang, L.; Zhou, T. Y.; Ma, W.; Xu, C.; Feng, S.; Chen, L.; Chen, M. L.; Sun, D. M.; Chen, X. Q.; Cheng, H. M.; Ren, W. C. Science 2020, 369, 670.
doi: 10.1126/science.abb7023 |
[21] |
Bafekry, A.; Faraji, M.; Hoat, D. M.; Fadlallab, M. M.; Shahrokhi, M.; Shojaei, F.; Gogova, D.; Ghergherehchi, M. J. Phys. D: Appl. Phys. 2021, 54, 155303.
doi: 10.1088/1361-6463/abdb6b |
[22] |
Novoselov, K. S.; Ge, Q.; Daria, V. A. Natl. Sci. Rev. 2020, 7, 559.
doi: 10.1093/nsr/nwz202 pmid: 34692074 |
[23] |
Li, Q. F.; Zhou, W. X.; Wan, X. G.; Zhou, J. Phys. E (Amsterdam, Neth.) 2021, 131, 114753.
|
[24] |
Yu, J. H.; Zhou, J.; Wan, X. G.; Li, Q. F. New J. Phys. 2021, 23, 033005.
doi: 10.1088/1367-2630/abe8f7 |
[25] |
Cai, Y. Q.; Zhang, G.; Zhang, Y. W. J. Am. Chem. Soc. 2014, 136, 6269.
doi: 10.1021/ja4109787 |
[26] |
Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.
doi: 10.1103/PhysRevB.41.7892 |
[27] |
Kohn, W.; Sham, L. J. J. Phys. Rev. 1965, 140, 1133.
|
[28] |
Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
doi: 10.1103/PhysRevB.13.5188 |
[29] |
Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens. Matter 2002, 14, 2717.
|
[30] |
Wang, H. Y. Ph.D. Dissertation, Zhongnan University, Changsha, 2008. (in Chinese)
|
(王焕友, 博士论文, 中南大学, 长沙, 2008.)
|
|
[31] |
Yu, W. L.; Zhang, J. F.; Peng, T. Y. Appl. Catal., B 2016, 181, 220.
doi: 10.1016/j.apcatb.2015.07.031 |
[32] |
Ma, X. G.; Lu, B.; Li, D.; Shi, R.; Pan, C. S.; Zhu, Y. F. J. Phys. Chem. C 2011, 115, 4680.
doi: 10.1021/jp111167u |
[33] |
Garg, R.; Dutta, N. K.; Choudhury, N. R. Nanomaterials 2014, 4, 267.
doi: 10.3390/nano4020267 |
[34] |
Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543.
doi: 10.2138/am-2000-0416 |
[35] |
Chun, W. J.; Ishikawa, A.; Fujisawa, H.; Takata, T.; Kondo, J. N.; Hara, M.; Kawai, M.; Matsumoto, Y.; Domen, K. J. Phys. Chem. B 2003, 107, 1798.
doi: 10.1021/jp027593f |
[36] |
Hong, Y. L. Ph.D. Dissertation, University of Science and Technology of China, Hefei, 2020. (in Chinese)
|
(洪艺伦, 博士论文, 中国科学技术大学, 合肥, 2020.)
|
|
[37] |
Peng, Q.; Wang, Z. Y.; Sa, B. S.; Wu, B.; Sun, Z. M. Sci. Rep. 2016, 6, 31994.
doi: 10.1038/srep31994 |
[1] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines [J]. Acta Chimica Sinica, 2024, 82(2): 190-212. |
[2] | Yuhan Wu, Dongdong Zhang, Hongyu Yin, Zhengnan Chen, Wen Zhao, Yuhua Chi. Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target [J]. Acta Chimica Sinica, 2023, 81(9): 1148-1156. |
[3] | Kai Zhang, Xiaojun Wu. Room-Temperature Ferromagnetism in Two-Dimensional Janus Titanium Chalcogenides★ [J]. Acta Chimica Sinica, 2023, 81(9): 1142-1147. |
[4] | Jiawen Liu, Weihuang Lin, Weijia Wang, Xueyi Guo, Ying Yang. Synthesis and Photocatalytic Degradation of Cu1.94S-SnS Nano-heterojunction [J]. Acta Chimica Sinica, 2023, 81(7): 725-734. |
[5] | Xuefeng Liang, Jian Jing, Xin Feng, Yongze Zhao, Xinyuan Tang, Yan He, Lisheng Zhang, Huifang Li. Electronic Structure of Covalent Organic Frameworks COF66 and COF366: from Monomers to Two-Dimensional Framework [J]. Acta Chimica Sinica, 2023, 81(7): 717-724. |
[6] | Minghui He, Ziqiu Ye, Guiqing Lin, Sheng Yin, Xinyi Huang, Xu Zhou, Ying Yin, Bo Gui, Cheng Wang. Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis★ [J]. Acta Chimica Sinica, 2023, 81(7): 784-792. |
[7] | Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters [J]. Acta Chimica Sinica, 2023, 81(6): 657-668. |
[8] | Fei Li, Huili Ding, Chaozhong Li. Hydrotrifluoromethylation of Alkenes with a Fluoroform-Derived Trifluoromethylboron Complex [J]. Acta Chimica Sinica, 2023, 81(6): 577-581. |
[9] | Qi Xueping, Wang Fei, Zhang Jian. A Post-Synthetic Method for the Construction of Titanium-Based Metal Organic Frameworks and Their Applications [J]. Acta Chimica Sinica, 2023, 81(5): 548-558. |
[10] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Radical-Based Dehydroxylation of Hydroxyl Groups via Oxalates [J]. Acta Chimica Sinica, 2023, 81(11): 1609-1623. |
[11] | Zhengjia Zhao, Kang Liu, Yan Guo, Jipan Yu, Weiqun Shi. Research Progress of Transuranic Organometallic Chemistry [J]. Acta Chimica Sinica, 2023, 81(11): 1633-1641. |
[12] | Bing Zheng, Zhe Wang, Jing He, Jiao Zhang, Wenbo Qi, Mengyuan Zhang, Haitao Yu. Structure and Work Function of Alkaline (Earth) Metal-Bilayer α-Borophene Nanocomposite: A Theoretical Study [J]. Acta Chimica Sinica, 2023, 81(10): 1357-1370. |
[13] | Chunhui Yang, Jingchao Chen, Xinhan Li, Li Meng, Kaimin Wang, Weiqing Sun, Baomin Fan. Difluoroallylation of Silanes under Photoirradiation [J]. Acta Chimica Sinica, 2023, 81(1): 1-5. |
[14] | Zhongshu Xie, Zhongxin Xue, Ziwen Xu, Qian Li, Hongyu Wang, Wei-Shi Li. Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production [J]. Acta Chimica Sinica, 2022, 80(9): 1231-1237. |
[15] | Zipeng Qi, Dong Gao, Zhicheng Zhu, Zhiyuan He, Guoying Bai. Regulating Optical Properties of Water-Soluble Conjugated Polythiophene with Polyvinyl Alcohol [J]. Acta Chimica Sinica, 2022, 80(7): 921-928. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||