Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (4): 423-427.DOI: 10.6023/A22010001 Previous Articles     Next Articles

Special Issue: 中国科学院青年创新促进会合辑

Communication

基于cypate光裂解的新型近红外光响应稀土上转换纳米载药系统

刘若湄a,b, 冯艳辉a,b, 李卓b, 卢珊a,b,*(), 关天用b, 李幸俊b, 刘䶮b, 陈卓b, 陈学元a,b,*()   

  1. a 福州大学 化学学院 福州 350108
    b 中国科学院福建物质结构研究所 中国科学院功能纳米结构设计与组装重点实验室 福州 350002
  • 投稿日期:2022-01-01 发布日期:2022-04-28
  • 通讯作者: 卢珊, 陈学元
  • 作者简介:
    庆祝中国科学院青年创新促进会十年华诞.
  • 基金资助:
    国家自然科学基金(12174392); 国家自然科学基金(22175179); 国家自然科学基金(22135008); 福建省自然科学基金(2021I0040); 福建省自然科学基金(2021L3024); 福建省自然科学基金(2021Y0067)

A Novel Near-infrared Responsive Lanthanide Upconversion Nanoplatform for Drug Delivery Based on Photocleavage of Cypate

Ruomei Liua,b, Yanhui Fenga,b, Zhuo Lib, Shan Lua,b(), Tianyong Guanb, Xingjun Lib, Yan Liub, Zhuo Chenb, Xueyuan Chena,b()   

  1. a College of Chemistry, Fuzhou University, Fuzhou 350108, China
    b CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • Received:2022-01-01 Published:2022-04-28
  • Contact: Shan Lu, Xueyuan Chen
  • About author:
    Dedicated to the 10th anniversary of the Youth Innovation Promotion Association, CAS.
  • Supported by:
    National Natural Science Foundation of China(12174392); National Natural Science Foundation of China(22175179); National Natural Science Foundation of China(22135008); Natural Science Foundation of Fujian Province(2021I0040); Natural Science Foundation of Fujian Province(2021L3024); Natural Science Foundation of Fujian Province(2021Y0067)

Light-responsive drug delivery systems (DDS) exhibit the advantages of non-invasive, high controllability and spatio-temporal precision. However, DDS triggered by near-infrared (NIR) light are few and inefficient. In this work, we designed a novel NIR-responsive upconversion nanoplatform for drug delivery. In this nanoplatform, core-shell upconversion nanoparticle (UCNP) NaYF4:Yb,Er@NaYF4 was coated by mesoporous silica, and then successively coupled with NIR dye cypate, amantadine (AD) and β-cyclodextrin (β-CD) to block the pores and entrap the drugs. The cypate molecules with the feature of auto-sensitized photooxidation under 808 nm irradiation were, for the first time, employed as light-responsive moieties in DDS. The obtained nanoplatform was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption/desorption, dynamic light scattering (DLS) and zeta potential analysis. Mechanism of photocleavage of cypate by singlet oxygen (1O2) was also investigated by electron spin resonance (ESR) measurement. The nanoplatform loaded with antibiotic ofloxacin (OFL) showed a low drug leakage (6.9%) in the dark condition and a rapid release (50.9%) upon 808 nm irradiation with a relatively low power density of 0.5 W•cm-2 for 40 min. Moreover, on-demand release of OFL can be achieved by adjusting the irradiation time (0~40 min). In vitro antibacterial experiments showed that the nanoplatform had a much better antibacterial effect against Staphylococcus aureus after 808 nm irradiation as compared with the group without irradiation. These results further verified the excellent NIR-responsive performance for the designed nanoplatform. In addition, the nanoplatform exhibited strong and stable upconversion luminescence (UCL) under 980 nm excitation, which can be applied for DDS tracing and bioimaging. The cytocompatibility of the nanoplatform was evaluated by methyl thiazolyl tetrazolium (MTT) assay, showing that the nanoplatform had no cytotoxic effect on human embryonic liver cell line (LO2) and exhibited great potentials in versatile bioapplications. Our work may open up a new avenue for the exploration of multi-functional NIR-responsive DDS.

Key words: upconversion nanoparticles, near-infrared light-responsive, near-infrared dye, drug delivery, photocleavage