Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (6): 848-860.DOI: 10.6023/A22010053 Previous Articles
Review
李晓倩, 张靖, 苏芳芳, 王德超, 姚东东*(), 郑亚萍*()
投稿日期:
2022-01-27
发布日期:
2022-07-07
通讯作者:
姚东东, 郑亚萍
作者简介:
李晓倩, 西北工业大学化学与化工学院材料学专业在读博士研究生, 研究方向为多孔离子液体的构筑及其气体吸附分离与催化转化应用. |
张靖, 西北工业大学化学与化工学院在读硕士研究生, 研究方向为先进多孔液体的合成及其催化应用. |
苏芳芳, 西北工业大学化学与化工学院化学专业在读博士研究生, 研究方向为先进多孔液体及无溶剂纳米流体的合成及其在光热转化领域的应用. |
王德超, 西北工业大学化学与化工学院化学专业博士研究生在读, 研究方向为新型分离复合材料(无溶剂纳米流体与多孔液体及其膜材料)、碳捕集和吸附工艺、化工过程计算机模拟. |
姚东东, 西北工业大学化学与化工学院副教授, 2013年获得中国科学院化学所高分子化学与物理专业博士学位, 神奈川大学博士后, 长期从事杂化多孔液体和聚合物纳米复合材料的制备及其应用研究. |
郑亚萍, 西北工业大学化学与化工学院教授, 博士生导师, 美国康奈尔大学访问学者, 研究方向为多孔液体、无溶剂纳米流体的构筑及其在CO2捕集、聚合物基复合材料纳米填料、膜分离、催化转化、光热转换等领域的应用. 现已主持完成国家自然科学基金、陕西省自然科学基金、航空科学基金等国家级、省部级纵向课题和横向课题20余项. 在AFM、ACS Nano、Angew. Chem.、Small、JMCA、CEJ、Nano-Micro Lett等权威期刊发表论文180余篇; 授权国家发明专利12件; 参编高等学校教材4部. |
基金资助:
Xiaoqian Li, Jing Zhang, Fangfang Su, Dechao Wang, Dongdong Yao(), Yaping Zheng()
Received:
2022-01-27
Published:
2022-07-07
Contact:
Dongdong Yao, Yaping Zheng
Supported by:
Share
Xiaoqian Li, Jing Zhang, Fangfang Su, Dechao Wang, Dongdong Yao, Yaping Zheng. Construction and Application of Porous Ionic Liquids[J]. Acta Chimica Sinica, 2022, 80(6): 848-860.
Type | Sample name | Viscosity/ (Pa•s at 25 ℃) | Tm /℃ | CO2 adsorption | Ref. | |
---|---|---|---|---|---|---|
PLs | PS-OS@SiNRs | Like-gel | 15, 20 | 3.3, 4.8% (w) (0 ℃) | [ | |
HS@OS@PEGs | 6.8 at 40 ℃ | 20 | CO2/N2 separation | [ | ||
4.2 at 50 ℃ | ||||||
UiO-66-liquids | 14.000 | –4.83 | 0.25 mmol•g-1 (1 MPa 25 ℃) | [ | ||
UiO-66-liquid-M2070 | 4.6 | –6.1 | 2.68 mmol•g-1 (1 MPa 25 ℃) | [ | ||
PILs | HCS-liquids | High viscosity | 12 | 55.9% (w) (0.1 MPa) | [ | |
100-P[VHIm]-PEGS | 8.9 at 50 ℃ | 9.8 | 1.8 mmol•g-1 (0.3 MPa) | [ | ||
18-C-6-PL | — | 50 | 0.43 mmol•g-1 (1 MPa) | [ |
Type | Sample name | Viscosity/ (Pa•s at 25 ℃) | Tm /℃ | CO2 adsorption | Ref. | |
---|---|---|---|---|---|---|
PLs | PS-OS@SiNRs | Like-gel | 15, 20 | 3.3, 4.8% (w) (0 ℃) | [ | |
HS@OS@PEGs | 6.8 at 40 ℃ | 20 | CO2/N2 separation | [ | ||
4.2 at 50 ℃ | ||||||
UiO-66-liquids | 14.000 | –4.83 | 0.25 mmol•g-1 (1 MPa 25 ℃) | [ | ||
UiO-66-liquid-M2070 | 4.6 | –6.1 | 2.68 mmol•g-1 (1 MPa 25 ℃) | [ | ||
PILs | HCS-liquids | High viscosity | 12 | 55.9% (w) (0.1 MPa) | [ | |
100-P[VHIm]-PEGS | 8.9 at 50 ℃ | 9.8 | 1.8 mmol•g-1 (0.3 MPa) | [ | ||
18-C-6-PL | — | 50 | 0.43 mmol•g-1 (1 MPa) | [ |
Type | Sample name | Viscosity/ (Pa•s at 25 ℃) | Tm/℃ | CO2 adsorption (25 ℃) | Ref. |
---|---|---|---|---|---|
PLs | PL1 | 5.1 | 30.8 cm3•g-1 (1 MPa) | [ | |
PL4 | 6.0 | –35 | 29.0 cm3•g-1 (1 MPa) | ||
PL5 | 11.0 | 12.4 cm3•g-1 (1 MPa) | |||
ZIF-8-g-BPEI -10 | 1.7 | –70.1 | 0.98 mL•g-1 (1 MPa) | [ | |
ZIF-8-g-BPEI -20 | 7.1 | –60.1 | 3.49 mL•g-1 (1 MPa) | ||
ZIF-8/[P66614][NTf2] | — | — | 2.12% (w) (0.5 MPa) | [ | |
PILs | ZIF-8/[DBU-PEG][NTf2] | — | — | 1.56 mmol•g-1 (1 MPa) | [ |
ZIF-8/[Bpy][NTf2] | — | — | 2.5% (w) | [ | |
H-ZSM-5-liquid | 9.550 | –13.5 | 2% (w) (1 MPa) | [ | |
UiO-66-liquid | — | 8 | 7.32% (w) (1 MPa) | [ | |
ZIF-67-PLs-2 | 0.54 | 5.77 mmol•g-1 (0.1 MPa) | [ | ||
ZIF-67-PLs-5 | 0.93 | –67 | 7.12 mmol•g-1 (0.1 MPa) | ||
ZIF-67-PLs-10 | 1.89 | — | 9.54 mmol•g-1 (0.1 MPa) |
Type | Sample name | Viscosity/ (Pa•s at 25 ℃) | Tm/℃ | CO2 adsorption (25 ℃) | Ref. |
---|---|---|---|---|---|
PLs | PL1 | 5.1 | 30.8 cm3•g-1 (1 MPa) | [ | |
PL4 | 6.0 | –35 | 29.0 cm3•g-1 (1 MPa) | ||
PL5 | 11.0 | 12.4 cm3•g-1 (1 MPa) | |||
ZIF-8-g-BPEI -10 | 1.7 | –70.1 | 0.98 mL•g-1 (1 MPa) | [ | |
ZIF-8-g-BPEI -20 | 7.1 | –60.1 | 3.49 mL•g-1 (1 MPa) | ||
ZIF-8/[P66614][NTf2] | — | — | 2.12% (w) (0.5 MPa) | [ | |
PILs | ZIF-8/[DBU-PEG][NTf2] | — | — | 1.56 mmol•g-1 (1 MPa) | [ |
ZIF-8/[Bpy][NTf2] | — | — | 2.5% (w) | [ | |
H-ZSM-5-liquid | 9.550 | –13.5 | 2% (w) (1 MPa) | [ | |
UiO-66-liquid | — | 8 | 7.32% (w) (1 MPa) | [ | |
ZIF-67-PLs-2 | 0.54 | 5.77 mmol•g-1 (0.1 MPa) | [ | ||
ZIF-67-PLs-5 | 0.93 | –67 | 7.12 mmol•g-1 (0.1 MPa) | ||
ZIF-67-PLs-10 | 1.89 | — | 9.54 mmol•g-1 (0.1 MPa) |
[1] |
Singh, G.; Lee, J.; Karakoti, A.; Bahadur, R.; Yi, J. B.; Zhao, D. Y.; AlBahily, K.; Vinu, A. Chem. Soc. Rev. 2020, 49, 4360.
doi: 10.1039/D0CS00075B |
[2] |
Wang, J. Y.; Huang., L.; Yang, R. Y.; Zhang, Z.; Wu, J. W.; Gao, Y. S.; Wang, Q.; O'Hare, D.; Zhong, Z. Y. Energy Environ. Sci. 2014, 7, 3478.
doi: 10.1039/C4EE01647E |
[3] |
Ning, H. L.; Yang, Z. Y.; Yin, Z. Q.; Wang, D. C.; Meng, Z. Y.; Wang, C. G.; Zhang, Y. T.; Chen, Z. P. ACS Appl. Mater. Interfaces 2021, 13, 17781.
doi: 10.1021/acsami.1c00917 |
[4] |
Kolle, J. M.; Fayaz, M.; Sayari, A. Chem. Rev. 2021, 121, 7280.
doi: 10.1021/acs.chemrev.0c00762 pmid: 33974800 |
[5] |
Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A. H.; Eddaoudi, M. J. Am. Chem. Soc. 2015, 137, 13308.
doi: 10.1021/jacs.5b07053 |
[6] |
Jie, K. C.; Zhou, Y. J.; Ryan, H. P.; Dai, S.; Nitschke, J. R. Adv. Mater. 2021, 202005745.
|
[7] |
Little, M. A.; Cooper, A. I. Adv. Funct. Mater. 2020, 30, 1909842.
doi: 10.1002/adfm.201909842 |
[8] |
Zou, L. F.; Sun, Y. J.; Che, S.; Yang, X. Y.; Wang, X.; Bosch, M.; Wang, Q.; Li, H.; Smith, M.; Yuan, S.; Perry, Z.; Zhou, H. C. Adv. Mater. 2017, 29, 1700229.
doi: 10.1002/adma.201700229 |
[9] |
Lin, Z. J.; Cao, R. Acta Chim. Sinica 2020, 78, 1309. (in Chinese)
doi: 10.6023/A20080359 |
(林祖金, 曹荣, 化学学报, 2020, 78, 1309.)
doi: 10.6023/A20080359 |
|
[10] |
Peng, Z. K.; Ding, H. M.; Chen, R. F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681. (in Chinese)
doi: 10.6023/A19040118 |
(彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77, 681.)
doi: 10.6023/A19040118 |
|
[11] |
Gao, W. L.; Liang, S. Y.; Wang, R. J.; Jiang, Q.; Zhang, Y.; Zheng, Q. W.; Xie, B. Q.; Toe, C. Y.; Zhu, X. C.; Wang, J. Y.; Huang, L.; Gao, Y. H; Wang, Z.; Jo, C. B.; Wang, Q.; Wang, L. D.; Liu, Y. F.; Louis, B.; Scott, J.; Roger, A. C.; Amal, R.; He, H.; Park, S. E. Chem. Soc. Rev. 2020, 49, 8584.
doi: 10.1039/D0CS00025F |
[12] |
O'Reilly, N.; Giri, N.; James, S. L. Chem. Eur. J. 2007, 13, 3020.
doi: 10.1002/chem.200700090 |
[13] |
Ahmad, M. Z.; Alessio, F. CRGSC 2021, 4, 100070.
|
[14] |
Egleston, B. D.; Luzyanin, K. V.; Brand, M. C.; Clowes, R.; Briggs, M. E.; Greenaway, R. L.; Cooper, A. I. Angew. Chem. Int. Ed. 2020, 59, 7362.
doi: 10.1002/anie.201914037 |
[15] |
Zhang, J. H.; Wei, M. J.; Lu, Y. L.; Wei, Z. W.; Wang, H. P.; Pan, M. ACS Appl. Energy Mater. 2020, 3, 12108.
doi: 10.1021/acsaem.0c02222 |
[16] |
Wang, D. C.; Xin, Y. Y.; Yao, D. D.; Li, X. Q.; Ning, H. L.; Zhang, H. M.; Wang, Y. D.; Ju, X. Q.; He, Z. J.; Yang, Z. Y.; Fan, W. D.; Li, P. P.; Zheng, Y. P. Adv. Funct. Mater. 2021, 2104162.
|
[17] |
Li, Y. ChemistrySelect 2020, 5, 13664.
doi: 10.1002/slct.202003957 |
[18] |
Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Yao, D. D.; Zheng, Y. P. Prog. Chem. 2021, 33, 1874. (in Chinese)
|
(王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍, 化学进展, 2021, 33, 1874.)
doi: 10.7536/PC200902 |
|
[19] |
Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Wang, F.; Wang, Y. D.; Zhang, W. R.; Zheng, Y. P.; Yao, D. D.; Yang, Z. Y.; Lei, X. F. Chem. Eng. J. 2021, 416, 127625.
doi: 10.1016/j.cej.2020.127625 |
[20] |
Liu, S.; Meng, L.; Fan, J. ChemistrySelect 2021, 6, 5027.
doi: 10.1002/slct.202100664 |
[21] |
Li, X. Q.; Yao, D. D.; Wang, D. C.; He, Z. J.; Tian, X. L.; Xin, Y. Y.; Su, F. F.; Wang, H. N.; Zhang, J.; Li, X. Y.; Li, M. T.; Zheng, Y. P. Chem. Eng. J. 2022, 429, 132296.
doi: 10.1016/j.cej.2021.132296 |
[22] |
Kumar, R.; Dhasaiyan, P.; Naveenkumar, P. M.; Sharma, K. P. Nanoscale Adv. 2019, 1, 4067.
doi: 10.1039/C9NA00353C |
[23] |
Zhang, J. H.; Chai, S. H.; Qiao, Z. A.; Mahurin, S. M.; Chen, J. H.; Fang, Y. X.; Wan, S.; Nelson, K.; Zhang, P. F.; Dai, S. Angew. Chem. Int. Ed. 2015, 54, 932.
doi: 10.1002/anie.201409420 |
[24] |
Greenaway, R. L.; Holden, D.; Eden, E. G. B.; Stephenson, A.; Yong, C. W.; Bennison, M. J.; Hasell, T.; Briggs, M. E.; James, S. L.; Cooper, A. I. Chem. Sci. 2017, 8, 2640.
doi: 10.1039/c6sc05196k pmid: 28553499 |
[25] |
Kai, A.; Egleston, B. D.; Tarzia, A.; Clowes, R.; Briggs, M. E.; Jelfs, K. E.; Cooper, A. I.; Greenaway, R. L. Adv. Funct. Mater. 2021, 2106116.
|
[26] |
Cahir, J.; Tsang, M. Y.; Lai, B. B; Hughes, D.; Alam, M. A.; Jacquemin, J.; Rooney, D.; James, S. L. Chem. Sci. 2020, 11, 2077.
doi: 10.1039/c9sc05770f pmid: 34123297 |
[27] |
Li, X. Q.; Wang, D. C.; Ning, H. L; Xin, Y. Y.; He, Z. J.; Su, F. F.; Wang, Y. D.; Zhang, J.; Wang, H. N.; Qian, L. W.; Zheng, Y. P.; Yao, D. D.; Li, M. T. Sep. Purif. Technol. 2021, 276, 119305.
doi: 10.1016/j.seppur.2021.119305 |
[28] |
He, S. F.; Chen, L. H.; Cui, J.; Yuan, B.; Wang, H. L.; Wang, F.; Yu, Y.; Lee, Y. J.; Li, T. J. Am. Chem. Soc. 2019, 141, 19708.
doi: 10.1021/jacs.9b08458 |
[29] |
Fulvio, P. F.; Dai, S. Chem 2020, 6, 3263.
doi: 10.1016/j.chempr.2020.11.005 |
[30] |
Zeeshan, M.; Nozari, V.; Yagci, M. B.; Isik, T.; Unal, U.; Ortalan, V.; Keskin, S.; Uzun, A. J. Am. Chem. Soc. 2018, 140, 10113
doi: 10.1021/jacs.8b05802 |
[31] |
Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621.
doi: 10.1038/nmat2448 |
[32] |
Mota-Martinez, M. T.; Brandl, P.; Hallett, J. P.; Mac Dowell, N. Mol. Syst. Des. Eng. 2018, 3, 560.
doi: 10.1039/C8ME00009C |
[33] |
Gomes, M. C.; Pison, L.; Cervinka, C.; Padua, A. Angew. Chem. Int. Ed. 2018, 57, 11909.
doi: 10.1002/anie.201805495 |
[34] |
Avila, J.; Červinka, C.; Dugas, P. Y.; Pádua, A. A. H.; Gomes, M. C. Adv. Mater. Interfaces 2021, 2001982.
|
[35] |
McCrellis, C.; Taylor, S. F. R.; Jacquemin, J.; Hardacre, C. J. Chem. Eng. Data 2016, 61, 1092.
doi: 10.1021/acs.jced.5b00710 |
[36] |
Bhattacharyya, S.; Filippov, A.; Shah, F. U. Phys. Chem. Chem. Phys. 2017, 19, 31216.
doi: 10.1039/c7cp07059d pmid: 29143022 |
[37] |
Peplow, M. C&EN 2020, 98, 9.
|
[38] |
Li, P. P.; Schott, J. A.; Zhang, J. S.; Mahurin, S. M.; Sheng, Y. J.; Qiao, Z. A.; Hu, X. X.; Cui, G. K.; Yao, D. D.; Brown, B.; Zheng, Y. P.; Dai, S. Angew. Chem. Int. Ed. 2017, 56, 14958.
doi: 10.1002/anie.201708843 |
[39] |
Su, F. F.; Li, X. Q.; Wang, Y. D.; He, Z. J.; Fan, L.; Wang, H. N.; Xie, J. L.; Zheng, Y. P.; Yao, D. D. Sep. Purif. Technol. 2021, 277, 119410.
doi: 10.1016/j.seppur.2021.119410 |
[40] |
Hasell, T.; Copper, A. I. Nat. Rev. Mater. 2016, 1, 16053.
doi: 10.1038/natrevmats.2016.53 |
[41] |
Jie, K. C.; Onishi, N.; Schott, J. A.; Popovs, I.; Jiang, D. E.; Mahurin, S.; Dai, S. Angew. Chem. Int. Ed. 2020, 59, 2268.
doi: 10.1002/anie.201912068 |
[42] |
Ma, L. L.; Haynes, C. J. E.; Grommet, A. B.; Walczak, A.; Parkins, C. C.; Doherty, C. M.; Longley, L.; Tron, A.; Stefankiewicz, A. R.; Bennett, T. D.; Nitschke, J. R. Nat. Chem. 2020, 12, 270.
doi: 10.1038/s41557-020-0419-2 |
[43] |
Zou, Y. H.; Huang, Y. B.; Si, D. H.; Yin, Q.; Wu, Q. J.; Weng, Z. X.; Cao, R. Angew. Chem. Int. Ed. 2021, 60, 20915.
doi: 10.1002/anie.202107156 |
[44] |
Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Ning, H. L.; Wang, Y. D.; Yao, D. D.; Zheng, Y. P.; Meng, Z. Y.; Yang, Z. Y.; Pan, Y. T.; Li, P. P.; Wang, H. N.; He, Z. J.; Fan, W. D. ACS Appl. Mater. Interfaces 2021, 13, 2600.
doi: 10.1021/acsami.0c18707 |
[45] |
Wang, D. X.; Xin, Y. Y.; Li, X. Q.; Wang, F.; Wang, Y. D.; Zhang, W. R.; Zheng, Y. P.; Yao, D. D.; Yang, Z. Y.; Lei, X. F. Chem. Eng. J. 2020, 416, 127625.
doi: 10.1016/j.cej.2020.127625 |
[46] |
Giri, N.; Del Popolo, M. G.; Melaugh, G.; Greenaway, R. L.; Ratzke, K.; Koschine, T.; Pison, L.; Gomes, M. F.; Cooper, A. I.; James, S. L. Nature 2015, 527, 216.
doi: 10.1038/nature16072 |
[47] |
Kearsey, R. J.; Alston, B. M.; Briggs, M. E.; Greenaway, R. L.; Cooper, A. I. Chem. Sci. 2019, 10, 9454.
doi: 10.1039/c9sc03316e pmid: 32110304 |
[48] |
Deng, Z.; Ying, W.; Gong, K.; Zeng, Y. J.; Yan, Y. G.; Peng, X. S. Small 2020, 16, 1907016.
doi: 10.1002/smll.201907016 |
[49] |
Shan, W. D.; Fulvio, P. F.; Kong, L. Y.; Schott, J. A.; Do-Thanh, C. L.; Tian, T.; Hu, X. X.; Mahurin, S. M.; Xing, H. B.; Dai, S. ACS Appl. Mater. Interfaces 2018, 10, 32.
doi: 10.1021/acsami.7b15873 |
[50] |
Liu, S. J.; Liu, J. D.; Hou, X. D.; Xu, T. T.; Tong, J.; Zhang, J. X.; Ye, B. J.; Liu, B. Langmuir 2018, 34, 3654.
doi: 10.1021/acs.langmuir.7b04212 |
[51] |
Li, P. P.; Chen, H.; Schott, J. A.; Li, B.; Zheng, Y. P.; Mahurin, S. M.; Jiang, D. E.; Cui, G. K.; Hu, X. X.; Wang, Y. Y.; Li, L. W.; Dai, S. Nanoscale 2019, 11, 1515.
doi: 10.1039/C8NR07337F |
[52] |
Lai, B. B.; Cahir, J.; Tsang, M. Y.; Jacquemin, J.; Rooney, D.; Murrer, B.; James, S. L. ACS Appl. Mater. Interfaces 2020, 13, 932.
doi: 10.1021/acsami.0c19044 |
[53] |
Zhao, X. M.; Yuan, Y. H.; Li, P. P.; Song, Z. J.; Ma, C. X.; Pan, D.; Wu, S. D.; Ding, T.; Guo, Z. H.; Wang, N. Chem. Commun. 2019, 55, 13179.
doi: 10.1039/C9CC07243H |
[54] |
Li, X. Q.; Wang, D. C.; He, Z. J.; Su, F. F.; Zhang, N.; Xin, Y. Y.; Wang, H. N.; Tian, X. L.; Zheng, Y. P.; Yao, D. D.; Li, M. T. Chem. Eng. J. 2021, 417, 129239.
doi: 10.1016/j.cej.2021.129239 |
[55] |
Wang, Z. H.; Zhao, P. P.; Wu, J.; Gao, J.; Zhang, L. Z.; Xu, D. M. New J. Chem. 2021, 45, 8557.
doi: 10.1039/D1NJ01053K |
[56] |
Li, P. P.; Wang, D. C.; Zhang, L.; Liu, C.; Wu, F.; Wang, Y. K.; Wang, Z.; Zhao, Z. H.; Wu, W. W.; Liang, Y. P.; Li, Z. M.; Wang, W. D.; Zheng, Y. P. Small 2021, 2006687.
|
[57] |
Avila, J.; Lepre, L. F.; Santini, C. C.; Tiano, S. M.; Denis-Quanquin, S.; Chung Szeto, K.; Padua, A. A. H.; Gomes, M. C. Angew. Chem. Int. Ed. 2021, 60, 12876.
doi: 10.1002/anie.202100090 |
[58] |
Wang, Y. J.; Liu, Y. Z.; Li, H.; Guan, X. Y.; Xue, M.; Yan, Y. S.; Valtchev, V.; Qiu, S. L.; Fang, Q. R. J. Am. Chem. Soc. 2020, 142, 3736.
doi: 10.1021/jacs.0c00560 |
[59] |
Mow, R. E.; Lipton, A. S.; Shulda, S.; Gaulding, E. A.; Gennett, T.; Braunecker, W. A. J. Mater. Chem. A 2020, 8, 23455.
doi: 10.1039/D0TA06768G |
[60] |
Yang, N.; Lu, L. J.; Zhu, L. H.; Wu, P. W.; Tao, D. J.; Gong, J. H.; Chen, L. L.; Chao, Y. H.; Zhu, W. S. Inorg. Chem. Front. 2022, 9, 165.
doi: 10.1039/D1QI01255J |
[61] |
Zhou, Y.; Jocasta, A.; Berthet, N.; Legrand, S.; Santini, C. C.; Gomes, C. C.; Dufaud, V. Chem. Commun. 2021, 57, 7922.
doi: 10.1039/D1CC02642A |
[62] |
Chen, H.; Yang, Z. Z.; Peng, H. G.; Jie, K. C.; Li, P. P.; Ding, S. M.; Guo, W.; Suo, X.; Liu, J. X.; Yan, R.; Liu, W. M.; Do-Thanh, C. L.; Wang, H. M.; Wang, Z. D.; Han, L.; Yang, W. M.; Dai, S. Chem 2021, 7, 3340.
doi: 10.1016/j.chempr.2021.08.022 |
[63] |
Liu, W. Q.; Li, Z.; Xia, C. G. Prog. Chem. 2018, 30, 1143. (in Chinese)
|
(刘文巧, 李臻, 夏春谷, 化学进展, 2018, 30, 1143.)
doi: 10.7536/PC180106 |
[1] | Wen He, Bo Wang, Hanjun Feng, Xiangru Kong, Tao Li, Rui Xiao. Research Progress of CO2 Capture and Membrane Separation by Pebax Based Materials [J]. Acta Chimica Sinica, 2024, 82(2): 226-241. |
[2] | Shenna Deng, Changchun Peng, Yunhong Niu, Yun Xu, Yunxiao Zhang, Xiang Chen, Hongmin Wang, Shanshan Liu, Xiao Shen. Radical Brook Rearrangement Mediated Olefin Difunctionalization Involving α-Fluoroalkyl-α-silyl Methanols [J]. Acta Chimica Sinica, 2024, 82(2): 119-125. |
[3] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines [J]. Acta Chimica Sinica, 2024, 82(2): 190-212. |
[4] | Shan Li, Junxin Lu, Jie Liu, Lvqi Jiang, Wenbin Yi. Electrochemical Synthesis of α-Fluoroalkylated Ketones using Sodium Fluoroalkylsulfinate [J]. Acta Chimica Sinica, 2024, 82(2): 110-114. |
[5] | Dawei Zhang, Haiyang Zhao, Xiaotian Feng, Yucheng Gu, Xingang Zhang. Palladium-Catalyzed Cross-Coupling of Heteroaryl Bromides with gem-Difluoroallylborons [J]. Acta Chimica Sinica, 2024, 82(2): 105-109. |
[6] | Ruxin Zeng, Peng R. Chen. RNA-Binding Proteome Analysis and Functional Explorations★ [J]. Acta Chimica Sinica, 2024, 82(1): 53-61. |
[7] | Tongyi Zhai, Chang Ge, Pengcheng Qian, Bo Zhou, Longwu Ye. Brønsted Acid-Catalyzed Intramolecular Hydroalkoxylation/Claisen Rearrangement of Ynamides★ [J]. Acta Chimica Sinica, 2023, 81(9): 1101-1107. |
[8] | Yuhan Wu, Dongdong Zhang, Hongyu Yin, Zhengnan Chen, Wen Zhao, Yuhua Chi. Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target [J]. Acta Chimica Sinica, 2023, 81(9): 1148-1156. |
[9] | Duanda Wang, Xinyi Shen, Yongyang Song, Shutao Wang. Application Progress of Emerging Janus Particles for Oil-Water Separation★ [J]. Acta Chimica Sinica, 2023, 81(9): 1187-1195. |
[10] | Yuan Zhang, Beining Zheng, Meichun Fu, Shouhua Feng. Research Progress in the Application of Spinel Oxides in Tumor Therapy★ [J]. Acta Chimica Sinica, 2023, 81(8): 949-954. |
[11] | Zhanglong Yu, Zhongliang Li, Changjiang Yang, Qiangshuai Gu, Xinyuan Liu. Research Progress on Copper-Catalyzed Enantioselective Desymmetrization of Diols★ [J]. Acta Chimica Sinica, 2023, 81(8): 955-966. |
[12] | Ruxin Tian, Miao Yang, Guo Chen, Jiangshan Liu, Mengmei Yuan, Hong Yuan, Shuxin Ouyang, Tierui Zhang. Ru/Quartz Filter Paper: A Recyclable Photothermocatalytic Film for CO2 Methanation★ [J]. Acta Chimica Sinica, 2023, 81(8): 869-873. |
[13] | Shuang Yang, Ningyi Wang, Qingqing Hang, Yuchen Zhang, Feng Shi. Advances in Catalytic Asymmetric Reactions Involving o-Hydroxyphenyl Substituted p-Quinone Methides★ [J]. Acta Chimica Sinica, 2023, 81(7): 793-808. |
[14] | Minghui He, Ziqiu Ye, Guiqing Lin, Sheng Yin, Xinyi Huang, Xu Zhou, Ying Yin, Bo Gui, Cheng Wang. Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis★ [J]. Acta Chimica Sinica, 2023, 81(7): 784-792. |
[15] | Jiawen Liu, Weihuang Lin, Weijia Wang, Xueyi Guo, Ying Yang. Synthesis and Photocatalytic Degradation of Cu1.94S-SnS Nano-heterojunction [J]. Acta Chimica Sinica, 2023, 81(7): 725-734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||