Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (9): 1299-1308.DOI: 10.6023/A22060253 Previous Articles Next Articles
Review
投稿日期:
2022-06-06
发布日期:
2022-07-08
通讯作者:
魏俊年
作者简介:
陈霄, 北京大学化学与分子工程学院博士后. 2012年本科毕业于吉林化工学院; 2015年硕士毕业于天津大学; 2019年博士毕业于德国卡尔斯鲁厄理工学院(导师: Peter Roesky教授); 2020.01~2022.05军事科学院防化研究院博士后(合作导师: 裴承新研究员). 2022年6月至今北京大学化学与分子工程学院博士后(合作导师: 席振峰院士). |
许汉华, 北京大学化学与分子工程学院博士研究生. 2019年7月毕业于兰州大学化学系, 获理学学士学位; 2019年9月至今于北京大学化学与分子工程学院席振峰院士课题组攻读博士学位. |
石向辉, 北京大学化学与分子工程学院博士研究生. 2013年本科毕业于合肥工业大学; 2016年6月硕士毕业于北京化工大学; 2016.7~2017.8长春应用化学所研究实习员; 2017.8~2021.9月长春应用化学所助理研究员; 2021年9月至今于北京大学化学与分子工程学院席振峰院士课题组攻读博士学位. |
魏俊年, 北京大学化学与分子工程学院副研究员. 2010年本科毕业于北京大学化学与分子工程学院; 2015博士毕业于北京大学化学与分子工程学院(导师: 席振峰院士, 张文雄教授); 2015.08~2016.08美国加州大学洛杉矶分校博士后(合作导师: Paula Diaconescu教授); 2017.01~2020.07美国加州大学旧金山分校博士后(合作导师: Michael Evans教授); 2020年9月至今北京大学化学与分子工程学院副研究员. |
席振峰, 北京大学化学与分子工程学院教授, 中国科学院院士; 1983年本科毕业于厦门大学化学系, 1989年硕士研究生毕业于南京大学配位化学所、郑州大学和河南化学所, 1996年博士研究生毕业于日本分子科学研究所. 目前研究兴趣集中在氮气的活化与转化, 致力于实现温和条件下直接从氮气高效合成含氮有机化合物. 研究内容涉及金属有机化学、配位化学、光化学、电化学、有机合成化学及催化. |
基金资助:
Xiao Chen, Hanhua Xu, Xianghui Shi, Junnian Wei(), Zhenfeng Xi
Received:
2022-06-06
Published:
2022-07-08
Contact:
Junnian Wei
Supported by:
Share
Xiao Chen, Hanhua Xu, Xianghui Shi, Junnian Wei, Zhenfeng Xi. Dinitrogen Activation and Transformation Promoted by Rare Earth and Actinide Complexes[J]. Acta Chimica Sinica, 2022, 80(9): 1299-1308.
[1] |
Tanabe Y.; Nishibayashi Y. In Transition Metal-Dinitrogen Complexes, Ed.: Nishibayashi, Y., Wiley-VCH, Weinheim, 2019, Chapter 1.
|
[2] |
Kuriyama S.; Wei S.; Tanaka H.; Konomi A.; Yoshizawa K.; Nishibayashi Y. Inorg. Chem. 2022, 61, 5190.
doi: 10.1021/acs.inorgchem.2c00234 |
[3] |
McSkimming A.; Suess D. L. M. Nat. Chem. 2021, 13, 666.
doi: 10.1038/s41557-021-00701-6 |
[4] |
Wagner H. K.; Wadepohl H.; Ballmann J. Angew. Chem. Int. Ed. 2021, 60, 25804.
doi: 10.1002/anie.202111325 |
[5] |
Mo Z.; Shima T.; Hou Z. Angew. Chem. Int. Ed. 2020, 59, 8635.
doi: 10.1002/anie.201916171 |
[6] |
Zhuo Q.; Yang J.; Mo Z.; Zhou X.; Shima T.; Luo Y.; Hou Z. J. Am. Chem. Soc. 2022, 144, 6972.
doi: 10.1021/jacs.2c01851 |
[7] |
Shima T.; Yang J.; Luo G.; Luo Y.; Hou Z. J. Am. Chem. Soc. 2020, 142, 9007.
doi: 10.1021/jacs.0c02939 |
[8] |
Shima T.; Hu S.; Luo G.; Kang X.; Luo Y.; Hou Z. Science 2013, 340, 1549.
doi: 10.1126/science.1238663 |
[9] |
Lv Z.-J.; Huang Z.; Zhang W.-X.; Xi Z. J. Am. Chem. Soc. 2019, 141, 8773.
doi: 10.1021/jacs.9b04293 |
[10] |
Li D.; Zan L.; Chen S.; Shi Z.-J.; Chen P.; Xi Z.; Deng D. Natl. Sci. Rev. 2022, DOI: 10.1093/nsr/nwac042.
doi: 10.1093/nsr/nwac042 |
[11] |
Kim S.; Loose F.; Chirik P. J. Chem. Rev. 2020, 120, 5637.
doi: 10.1021/acs.chemrev.9b00705 |
[12] |
Lv Z.-J.; Wei J.; Zhang W.-X.; Chen P.; Deng D.; Shi Z.-J.; Xi Z. Natl. Sci. Rev. 2020, 7, 1564.
doi: 10.1093/nsr/nwaa142 |
[13] |
Tanabe Y.; Nishibayashi Y. Coord. Chem. Rev. 2019, 389, 73.
doi: 10.1016/j.ccr.2019.03.004 |
[14] |
Kuriyama S.; Nishibayashi Y. Tetrahedron 2021, 83, 131986.
doi: 10.1016/j.tet.2021.131986 |
[15] |
Singh D.; Buratto W. R.; Torres J. F.; Murray L. J. Chem. Rev. 2020, 120, 5517.
doi: 10.1021/acs.chemrev.0c00042 |
[16] |
Forrest S. J. K.; Schluschaß B.; Yuzik-Klimova E. Y.; Schneider S. Chem. Rev. 2021, 121, 6522.
doi: 10.1021/acs.chemrev.0c00958 |
[17] |
Yang J.-H.; Peng M.; Zhai D.-D.; Xiao D.; Shi Z.-J.; Yao S.; Ma D. ACS Catalysis 2022, 12, 2898.
doi: 10.1021/acscatal.1c04435 |
[18] |
Li J.-P.; Yin J.-H.; Yu C.; Zhang W.-X.; Xi Z.-F. Acta Chim. Sinica 2017, 75, 733.(in Chinese)
doi: 10.6023/A17040170 |
(李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰, 化学学报, 2017, 75, 733.)
doi: 10.6023/A17040170 |
|
[19] |
Nishibayashi Y. Transition Metal-Dinitrogen Complexes: Preparation and Reactivity, Wiley-VCH, Weinheim, 2019.
|
[20] |
Légaré M.-A.; Bélanger-Chabot G.; Dewhurst R. D.; Welz E.; Krummenacher I.; Engels B.; Braunschweig H. Science 2018, 359, 896.
doi: 10.1126/science.aaq1684 |
[21] |
Rösch B.; Gentner T. X.; Langer J.; Färber C.; Eyselein J.; Zhao L.; Ding C.; Frenking G.; Harder S. Science 2021, 371, 1125.
doi: 10.1126/science.abf2374 pmid: 33707259 |
[22] |
Légaré M.-A.; Rang M.; Bélanger-Chabot G.; Schweizer J. I.; Krummenacher I.; Bertermann R.; Arrowsmith M.; Holthausen M. C.; Braunschweig H. Science 2019, 363, 1329.
doi: 10.1126/science.aav9593 |
[23] |
Xu B.; Beckers H.; Ye H.; Lu Y.; Cheng J.; Wang X.; Riedel S. Angew. Chem. Int. Ed. 2021, 60, 17205.
doi: 10.1002/anie.202106984 |
[24] |
Liu T.-T.; Zhai D.-D.; Guan B.-T.; Shi Z.-J. Chem. Soc. Rev. 2022, 51, 3846.
doi: 10.1039/D2CS00041E |
[25] |
Gao Y.; Li G.; Deng L. J. Am. Chem. Soc. 2018, 140, 2239.
doi: 10.1021/jacs.7b11660 |
[26] |
Zhong M.; Cui X.; Wu B.; Wang G.-X.; Zhang W.-X.; Wei J.; Zhao L.; Xi Z. CCS Chemistry 2022, 4, 532.
doi: 10.31635/ccschem.021.202100945 |
[27] |
Wang G.-X.; Yin J.; Li J.; Yin Z.-B.; Wu B.; Wei J.; Zhang W.-X.; Xi Z. CCS Chemistry 2021, 3, 308.
doi: 10.31635/ccschem.021.202000712 |
[28] |
Fan Y.-M.; Cheng J.; Gao Y.-F.; Shi M.; Deng L. Acta Chim. Sinica 2018, 76, 445.(in Chinese)
doi: 10.6023/A18030095 |
(凡一明, 程骏, 高亚飞, 施敏, 邓亮, 化学学报, 2018, 76, 445.)
doi: 10.6023/A18030095 |
|
[29] |
Bai Y.; Zhang J.; Cui C.-M. Chem. Commun. 2018, 54, 8124.
doi: 10.1039/C8CC03734E |
[30] |
Bai Y.-P.; Cui C.-M. Acta Chim. Sinica 2020, 78, 763.(in Chinese)
doi: 10.6023/A20050163 |
(白云平, 崔春明, 化学学报, 2020, 78, 763.)
doi: 10.6023/A20050163 |
|
[31] |
Li S.-Z.; Ouyang Z.-W.; Zou J.-J.; Wang D.-Y.; Xu B.; Deng L. Acta Chim. Sinica 2022, 80, 272.(in Chinese)
doi: 10.6023/A22010038 |
(李尚钊, 欧阳振武, 邹俊杰, 王东阳, 许斌, 邓亮, 化学学报, 2022, 80, 272.)
doi: 10.6023/A22010038 |
|
[32] |
Zhang G.; Liu T.; Song J.; Quan Y.; Jin L.; Si M.; Liao Q. J. Am. Chem. Soc. 2022, 144, 2444.
doi: 10.1021/jacs.1c11134 |
[33] |
Song J.; Liao Q.; Hong X.; Jin L.; Mézailles N. Angew. Chem. Int. Ed. 2021, 60, 12242.
doi: 10.1002/anie.202015183 |
[34] |
Wang Q.; Pan J.; Guo J.; Hansen H. A.; Xie H.; Jiang L.; Hua L.; Li H.; Guan Y.; Wang P.; Gao W.; Liu L.; Cao H.; Xiong Z.; Vegge T.; Chen P. Nat. Catal. 2021, 4, 959.
doi: 10.1038/s41929-021-00698-8 |
[35] |
Cui C.; Jia Y.; Zhang H.; Geng L.; Luo Z. CCS Chemistry 2022, DOI: 10.31635/ccschem.022.202201879.
doi: 10.31635/ccschem.022.202201879 |
[36] |
Xu X.; Zhao X.; Tang J.; Duan Y.; Tian Y.-H. Angew. Chem. Int. Ed. 2022, 61, e202203680.
|
[37] |
Wang Q.; Guan Y.; Guo J.; Chen P. Cell Rep. Phys. Sci. 2022, 3, 100779.
|
[38] |
Hu K.-Q.; Qiu P.-X.; Zeng L.-W.; Hu S.-X.; Mei L.; An S.-W.; Huang Z.-W.; Kong X.-H.; Lan J.-H.; Yu J.-P.; Zhang Z.-H.; Xu Z.-F.; Gibson J. K.; Chai Z.-F.; Bu Y.-F.; Shi W.-Q. Angew. Chem. Int. Ed. 2020, 59, 20666.
doi: 10.1002/anie.202009630 |
[39] |
Sun Y.; Ding S.; Xia B.; Duan J.; Antonietti M.; Chen S. Angew. Chem. Int. Ed. 2022, 61, e202115198.
|
[40] |
Song Q.; Sun C.; Wang Z.; Bai X.; Wu K.; Li Q.; Zhang H.; Zhou L.; Pang H.; Liang Y.; Yue S.; Zhao Z. Mater. Today Phys. 2021, 21, 100563.
|
[41] |
Jori N.; Toniolo D.; Huynh B. C.; Scopelliti R.; Mazzanti M. Inorg. Chem. Front. 2020, 7, 3598.
doi: 10.1039/D0QI00801J |
[42] |
Willauer A. R.; Dabrowska A. M.; Scopelliti R.; Mazzanti M. Chem. Commun. 2020, 56, 8936.
doi: 10.1039/D0CC04197A |
[43] |
Bayer U.; Anwander R. Dalton Trans. 2020, 49, 17472.
doi: 10.1039/d0dt03578e pmid: 33232414 |
[44] |
Simler T.; Feuerstein T. J.; Yadav R.; Gamer M. T.; Roesky P. W. Chem. Commun. 2019, 55, 222.
doi: 10.1039/C8CC08120D |
[45] |
Evans W. J. J. Organomet. Chem. 2002, 652, 61.
doi: 10.1016/S0022-328X(02)01308-6 |
[46] |
La Pierre H. S.; Meyer K. In Progress in Inorganic Chemistry, Vol. 58, Ed.: Karlin, K. D., Wiley-VCH, Weinheim, 2014, Chapter 5.
|
[47] |
Fox A. R.; Bart S. C.; Meyer K.; Cummins C. C. Nature 2008, 455, 341.
doi: 10.1038/nature07372 |
[48] |
Liddle S. T. Angew. Chem. Int. Ed. 2015, 54, 8604.
doi: 10.1002/anie.201412168 |
[49] |
Arnold P. L. Chem. Commun. 2011, 47, 9005.
doi: 10.1039/c1cc10834d |
[50] |
Haber F. Z. Elektrochem. Angew. Phys. Chem. 1910, 16, 244.
|
[51] |
Haber F. Angew. Chem. Int. Ed. 1914, 27, 473.
doi: 10.1002/ange.19140276201 |
[52] |
Haber F.; Greenwood H. C. Z. Elektrochem. Angew. Phys. Chem. 1915, 21, 241.
|
[53] |
Bochkarev M. N.; Trifonov A. A.; Razuvaev G. A.; Ilatovskaya M. A.; Shur V. B. Izv. Akad. Nauk SSSR, Ser. Khim. 1986, 1898.
|
[54] |
Ryan A. J.; Balasubramani S. g.; Ziller J. W.; Furche F.; Evans W. J. J. Am. Chem. Soc. 2020, 142, 9302.
doi: 10.1021/jacs.0c01021 |
[55] |
Woen D. H.; Chen G. P.; Ziller J. W.; Boyle T. J.; Furche F.; Evans W. J. J. Am. Chem. Soc. 2017, 139, 14861.
doi: 10.1021/jacs.7b08456 |
[56] |
Evans W. J.; Lee D. S.; Ziller J. W.; Kaltsoyannis N. J. Am. Chem. Soc. 2006, 128, 14176.
doi: 10.1021/ja0640851 |
[57] |
Gardiner M. G.; Stringer D. N. Materials 2010, 3, 841.
doi: 10.3390/ma3020841 |
[58] |
Campazzi E.; Solari E.; Scopelliti R.; Floriani C. Chem. Commun. 1999, 1617.
|
[59] |
Campazzi E.; Solari E.; Floriani C.; Scopelliti R. Chem. Commun. 1998, 2603.
|
[60] |
Cheng J.; Takats J.; Ferguson M. J.; McDonald R. J. Am. Chem. Soc. 2008, 130, 1544.
doi: 10.1021/ja0776273 |
[61] |
Jubb J.; Gambarotta S. J. Am. Chem. Soc. 1994, 116, 4477.
doi: 10.1021/ja00089a047 |
[62] |
Turner Z. R. Inorganics 2015, 3, 597.
doi: 10.3390/inorganics3040597 |
[63] |
Gardner B. M.; Liddle S. T. Eur. J. Inorg. Chem. 2013, 2013, 3753.
doi: 10.1002/ejic.201300111 |
[64] |
Zhu Q.; Fang W.; Maron L.; Zhu C. Acc. Chem. Res. 2022, 55, 1718.
doi: 10.1021/acs.accounts.2c00180 |
[65] |
Mansell S. M.; Kaltsoyannis N.; Arnold P. L. J. Am. Chem. Soc. 2011, 133, 9036.
doi: 10.1021/ja2019492 |
[66] |
Cloke F. G. N.; Hitchcock P. B. J. Am. Chem. Soc. 2002, 124, 9352.
doi: 10.1021/ja027000e |
[67] |
Odom A. L.; Arnold P. L.; Cummins C. C. J. Am. Chem. Soc. 1998, 120, 5836.
doi: 10.1021/ja980095t |
[68] |
Evans W. J. Inorg. Chem. 2007, 46, 3435.
doi: 10.1021/ic062011k |
[69] |
Kovács A. Int. J. Quantum Chem. 2020, 120, e26051.
|
[70] |
Lu E.; Atkinson B. E.; Wooles A. J.; Boronski J. T.; Doyle L. R.; Tuna F.; Cryer J. D.; Cobb P. J.; Vitorica-Yrezabal I. J.; Whitehead G. F. S.; Kaltsoyannis N.; Liddle S. T. Nat. Chem. 2019, 11, 806.
doi: 10.1038/s41557-019-0306-x |
[71] |
Hirotsu M.; Fontaine P. P.; Zavalij P. Y.; Sita L. R. J. Am. Chem. Soc. 2007, 129, 12690.
doi: 10.1021/ja0752989 |
[72] |
Chirik P. J. Nat. Chem. 2009, 1, 520.
doi: 10.1038/nchem.386 pmid: 21378927 |
[73] |
Evans W. J.; Ulibarri T. A.; Ziller J. W. J. Am. Chem. Soc. 1988, 110, 6877.
doi: 10.1021/ja00228a043 |
[74] |
Trifonov A. A.; Bochkarev M. N.; Razuvaev G. A. Zh. Obshch. Khim. 1988, 58, 931.
|
[75] |
Dubé T.; Ganesan M.; Conoci S.; Gambarotta S.; Yap G. P. A. Organometallics 2000, 19, 3716.
doi: 10.1021/om000502l |
[76] |
Bérubé C. D.; Yazdanbakhsh M.; Gambarotta S.; Yap G. P. A. Organometallics 2003, 22, 3742.
doi: 10.1021/om030155q |
[77] |
Evans W. J.; Lee D. S.; Ziller J. W. J. Am. Chem. Soc. 2004, 126, 454.
doi: 10.1021/ja036923m |
[78] |
Tanabe Y. In Transition Metal-Dinitrogen Complexes, Ed.: Nishibayashi, Y., Wiley-VCH, Weinheim, 2019, Chapter 9.
|
[79] |
Ullstad F.; Bioletti G.; Chan J. R.; Proust A.; Bodin C.; Ruck B. J.; Trodahl J.; Natali F. ACS Omega 2019, 4, 5950.
doi: 10.1021/acsomega.9b00293 |
[80] |
Yan H.; Gao W.; Cui J.; Zhang W.; Pei Q.; Wang Q.; Guan Y.; Feng S.; Wu H.; Cao H.; Guo J.; Chen P. J. Energy Chem. 2022, DOI: 10.1016/j.jechem.2022.04.011.
doi: 10.1016/j.jechem.2022.04.011 |
[81] |
Ye T.-N.; Park S.-W.; Lu Y.; Li J.; Wu J.; Sasase M.; Kitano M.; Hosono H. J. Am. Chem. Soc. 2021, 143, 12857.
doi: 10.1021/jacs.1c06657 |
[82] |
Evans W. J.; Lee D. S. Can. J. Chem. 2005, 83, 375.
doi: 10.1139/v05-014 |
[83] |
Roussel P.; Scott P. J. Am. Chem. Soc. 1998, 120, 1070.
doi: 10.1021/ja972933+ |
[84] |
Evans W. J.; Kozimor S. A.; Ziller J. W. J. Am. Chem. Soc. 2003, 125, 14264.
doi: 10.1021/ja037647e |
[85] |
Arnold P. L.; Ochiai T.; Lam F. Y. T.; Kelly R. P.; Seymour M. L.; Maron L. Nat. Chem. 2020, 12, 654.
doi: 10.1038/s41557-020-0457-9 pmid: 32366961 |
[86] |
Xin X.; Douair I.; Zhao Y.; Wang S.; Maron L.; Zhu C. J. Am. Chem. Soc. 2020, 142, 15004.
doi: 10.1021/jacs.0c05788 |
[87] |
Wang P.; Douair I.; Zhao Y.; Wang S.; Zhu J.; Maron L.; Zhu C. Angew. Chem. Int. Ed. 2021, 60, 473.
doi: 10.1002/anie.202012198 |
[88] |
Falcone M.; Chatelain L.; Scopelliti R.; Z̆ivković I.; Mazzanti M. Nature 2017, 547, 332.
doi: 10.1038/nature23279 |
[89] |
Panthi D.; Adeyiga O.; Dandu N. K.; Odoh S. O. Inorg. Chem. 2019, 58, 6731.
doi: 10.1021/acs.inorgchem.9b00129 pmid: 31050297 |
[90] |
Falcone M.; Barluzzi L.; Andrez J.; Fadaei Tirani F.; Z̆ivković I.; Fabrizio A.; Corminboeuf C.; Severin K.; Mazzanti M. Nat. Chem. 2019, 11, 154.
doi: 10.1038/s41557-018-0167-8 pmid: 30420774 |
[91] |
Jori N.; Barluzzi L.; Douair I.; Maron L.; Fadaei-Tirani F.; Z̆ivković I.; Mazzanti M. J. Am. Chem. Soc. 2021, 143, 11225.
doi: 10.1021/jacs.1c05389 |
[1] | Kang Liu, Yan Guo, Jipan Yu, Weiqun Shi. Research Progress of Actinide Single Molecule Magnets [J]. Acta Chimica Sinica, 2023, 81(3): 264-274. |
[2] | Xingyu Ma, Hui Sun, Jiang Li, Zhiyang Liu, Hongjun Zhou. “Continuous” Nitrogen Reduction Synthesis of Ammonia Based on Li-N2 Battery System [J]. Acta Chimica Sinica, 2022, 80(7): 861-866. |
[3] | Tan Zhang, Zhongliang Yu, Jiaqi Yu, Huining Wan, Chengyu Bao, Wenqiang Tu, Song Yang. Chemical Looping Ammonia Synthesis with High Performance Supported Molybdenum-based Nitrogen Carrier [J]. Acta Chimica Sinica, 2022, 80(6): 788-796. |
[4] | Tiantian Lü, Wen Ma, Dongsun Zhan, Yanmin Zou, Jilong Li, Meiling Feng, Xiaoying Huang. Two New Three-Dimensional Lanthanide Metal-organic Frameworks for the Highly Efficient Removal of Cs+ Ions※ [J]. Acta Chimica Sinica, 2022, 80(5): 640-646. |
[5] | Zhifen Wu, Jianxi Ke, Yongsheng Liu, Pengming Sun, Maochun Hong. Lanthanide-based NIR-II Fluorescent Nanoprobes and Their Biomedical Applications※ [J]. Acta Chimica Sinica, 2022, 80(4): 542-552. |
[6] | Bin Li, Jipan Yu, Kang Liu, Qunyan Wu, Qi Liu, Weiqun Shi. Research Progress of Actinide-Ligand Multiple Bonding Supported by Tripodal Ligands [J]. Acta Chimica Sinica, 2021, 79(8): 986-998. |
[7] | Longfei Song, Yanyan Zhou, Ting Gao, Pengfei Yan, Hongfeng Li. Point Chirality Regulated Diastereoselective Self-Assembly and Circularly Polarized Luminescence in Eu(III) Triple-Stranded Helicates [J]. Acta Chimica Sinica, 2021, 79(8): 1042-1048. |
[8] | Wan Rui-Chen, Wu Si-Guo, Liu Jun-Liang, Jia Jian-Hua, Huang Guo-Zhang, Li Quan-Wen, Tong Ming-Liang. Modulation of Slow Magnetic Relaxation for Tb(III)-Metallacrown Complexes by Controlling Axial Halide Coordination [J]. Acta Chimica Sinica, 2020, 78(5): 412-418. |
[9] | Zhou Wei-Lei, Chen Yong, Liu Yu. Lanthanide Luminescent Supramolecular Assembly Based on Cyclodextrin [J]. Acta Chimica Sinica, 2020, 78(11): 1164-1176. |
[10] | Yang Zhice, Tian Jianan, Cai Hongxue, Li Li, Pan Qingjiang. Theoretical Probe for Tris(aryloxide)arene Complexed Low-valent Actinide Ions and Their Structural/Redox Properties [J]. Acta Chimica Sinica, 2020, 78(10): 1096-1101. |
[11] | Tian Haiquan, Zheng Li-Min. Cyclic Lanthanide-based Molecular Clusters: Assembly and Single Molecule Magnet Behavior [J]. Acta Chimica Sinica, 2020, 78(1): 34-55. |
[12] | Li Jiapeng, Yin Jianhao, Yu Chao, Zhang Wenxiong, Xi Zhenfeng. Direct Transformation of N2 to N-Containing Organic Compounds [J]. Acta Chim. Sinica, 2017, 75(8): 733-743. |
[13] | Yue Guozong, Gao Rui, Zhao Pengxiang, Chu Mingfu, Shuai Maobing. Trivalent Uranium Complex in Small Molecules Activation [J]. Acta Chim. Sinica, 2016, 74(8): 657-663. |
[14] | Ren Min, Zheng Li-Min. Lanthanide-based Single Molecule Magnets [J]. Acta Chim. Sinica, 2015, 73(11): 1091-1113. |
[15] | Gu Zhiguo, Wang Baoxiang, Pang Chunyan, Zhou Wen, Li Zaijun. Syntheses, Characterization and Fluorescent Properties of Lanthanide-Containing Ionic Liquids [Cnmim][Ln(NO3)4] [J]. Acta Chimica Sinica, 2012, 70(24): 2501-2506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||