Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (12): 1629-1642.DOI: 10.6023/A22080362 Previous Articles Next Articles
Review
安攀a, 张庆慧b, 杨状a, 武佳星a, 张佳颖a, 王雅君a,*(), 李宇明a, 姜桂元a
投稿日期:
2022-08-19
发布日期:
2022-11-02
通讯作者:
王雅君
作者简介:
安攀, 中国石油大学(北京)在读研究生, 2020年9月加入中国石油大学(北京)新能源与材料学院王雅君研究员课题组, 主要研究方向为光催化和光电催化. |
张庆慧, 中国石油大学(北京)化学工艺专业硕士学位, 2008年9月起进入国家知识产权局专利局, 现任材料部催化剂处副处长, 长期从事化工、催化剂领域的专利审查工作, 2013年起参与专利复审案件的审理, 熟悉化工废气净化、废水处理等方向专利技术发展情况, 目前致力于催化剂, 尤其是光催化剂方向的研究工作. 截至目前参与局级课题5项, 发表文章2篇. |
王雅君, 研究员, 博士生导师. 2006年于清华大学获学士学位, 2011年于清华大学获博士学位. 2013年至今于中国石油大学(北京)从事光催化、光电催化、纳米材料合成等方面的研究. 先后入选校优秀青年学者、石大学者、北京市科技新星等. 近年来在Energ. Environ. Sci.、Adv. Mater.、Appl. Catal. B-Environ.等刊物发表SCI收录论文40余篇. 担任Nanomaterials客座编辑和Chinese Chemistry Letter、Petroleum Science、颗粒学报青年编委. 获2016年教育部高等学校科学研究优秀成果奖(科学技术)自然科学奖一等奖, 获2021年中国分析测试协会科学技术奖(CAIA奖)一等奖等. |
基金资助:
Pan Ana, Qinghui Zhangb, Zhuang Yanga, Jiaxing Wua, Jiaying Zhanga, Yajun Wanga(), Yuming Lia, Guiyuan Jianga
Received:
2022-08-19
Published:
2022-11-02
Contact:
Yajun Wang
About author:
Supported by:
Share
Pan An, Qinghui Zhang, Zhuang Yang, Jiaxing Wu, Jiaying Zhang, Yajun Wang, Yuming Li, Guiyuan Jiang. Research Progress of Solar Hydrogen Production Technology under Double Carbon Target[J]. Acta Chimica Sinica, 2022, 80(12): 1629-1642.
[1] |
Gao, H. International Petroleum Economics 2021, 29, 1. (in Chinese)
|
( 高虎, 国际石油经济, 2021, 29, 1.)
|
|
[2] |
Gong, X. Beijing Planning Review 2022, (01), 67. (in Chinese)
|
( 龚翔, 北京规划建设, 2022, (01), 67.)
|
|
[3] |
Zhou, Y. M. China Development Observation 2021, (Z1), 56. (in Chinese)
|
( 周亚敏, 中国发展观察, 2021, (Z1), 56.)
|
|
[4] |
Zhu, Y. F.; Yao, W. Q.; Zong, R. L. Chinese J. Anal. Chem. 2015, 43, 393. (in Chinese)
|
( 朱永法, 姚文清, 宗瑞隆, 分析化学 2015, 43, 393.)
|
|
[5] |
Li, F. H.; Liu, Y. H.; Mao, B. D.; Li, L. H.; Huang, H.; Zhang, D. Q.; Dong, W. X.; Kang, Z. H.; Shi, W. D. Appl. Catal. B 2021, 292, 120154.
|
[6] |
Zhou, Z. Y..; Xie, Y. N.; Zhu, W. Z.; Zhao, H. Y.; Yang, N. J.; Zhao, G. H. Appl. Catal. B 2020, 286, 119868.
|
[7] |
Photovoltaic hydrogen production + coupled coal production million tons of methanol zero carbon emission project signed a cooperation agreement, Coal Chemical Industry 2020, 48, 44. (in Chinese)
|
(光伏制氢+耦合煤制百万吨甲醇零碳排放项目签署合作协议,煤化工, 2020, 48, 44.)
|
|
[8] |
Yang, Z.; Gao, X. X.; Jiang, X. J. Metal Mine 2017, (03), 167. (in Chinese)
|
( 杨状, 高星星, 姜效军, 金属矿山 2017, (03), 167.)
|
|
[9] |
Yang, Z.; Gao, X. X.; Zhao, T. L.; Li, Y.; Jiang, X. J.; Wang, J. Metal Mine 2017, (07), 173. (in Chinese)
|
( 杨状, 高星星, 赵通林, 李洋, 姜效军, 王舰, 金属矿山 2017, (07), 173.)
|
|
[10] |
Yang, Z.; Gao, X. X.; Zhao, T. L.; Li, Y.; Wang, J.; Tao, D. P.; Niu, W. J. Journal of Liaoning University of Science and Technology 2017, 40, 368. (in Chinese)
|
( 杨状, 高星星, 赵通林, 李洋, 王舰, 陶东平, 牛文杰, 辽宁科技大学学报, 2017, 40, 368.)
|
|
[11] |
Li, C. Solar Energy Conversion Science and Technology, Science Press, Beijing, 2020. (in Chinese)
|
( 李灿, 太阳能转化科学与技术, 科学出版社, 北京, 2020.)
|
|
[12] |
Kudo, A.; Kato, H.; Tsuji, I. Chem. Lett. 2004, 33, 1534.
|
[13] |
Maeda, K.; Domen, K. J. Phys. Chem. C 2007, 111, 7851.
|
[14] |
Osterloh, F. E. Chem. Mater. 2008, 20, 35.
|
[15] |
Kumar, A.; Navakoteswara Rao, V.; Kumar, A.; Mushtaq, A.; Sharma, L.; Halder, A.; Pal, S. K.; Shankar, M. V.; Krishnan, V. ACS Appl. Energy Mater. 2020, 12, 12134.
|
[16] |
Wang, J.; Yang, Z.; Yao, W. Q.; Gao, X. X.; Tao, D. P. Appl. Catal. B 2018, 238, 629.
|
[17] |
Abdul Nasir, J.; Islama, N.; Rehmana, Z.; Butlerc, I. S.; Munird, A.; Nishina, Y. Mater. Chem. Phys. 2021, 259, 124140.
|
[18] |
Fujishima, A.; Honda, K. Nature 1972, 238, 37.
|
[19] |
Xiao, Y. Q. Ph.D. Dissertation, University of Electronic Science and Technology of China, Chengdu, 2021. (in Chinese)
|
( 肖业权, 博士论文, 电子科技大学, 成都, 2021.)
|
|
[20] |
Ganguly, P.; Moussab Harb, M.; Cao, Z.; Cavallo, L.; Breen, A.; Dervin, S.; Dionysiou, D. D.; Pillai, S. C. ACS Energy Lett. 2019, 4, 1687.
|
[21] |
Zhang, Y. C.; Nisha, A.; Pan, L.; Zhang, X. W.; Zou, J. J. Adv. Sci. 2019, 1900053.
|
[22] |
Biswal, B. P.; Vignolo-González, H. A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsch, B. V. J. Am. Chem. Soc. 2019, 141, 11082.
|
[23] |
Wang, Y. J.; Chen, J.; Liu, L. M.; Xi, X. X.; Li, Y. M.; Geng, Z. L.; Jiang, G. Y.; Zhao, Z. Nanoscale 2019, 11, 1618.
|
[24] |
Wang, Y. J.; Zhang, Y. N.; Jiang, Z. Q.; Jiang, G. Y.; Zhao, Z.; Wu, Q. H.; Liu, Y.; Xu, Q.; Duan, A. j.; Xu, C. M. Appl. Catal. B 2016, 185, 307.
|
[25] |
Cheng, H. F.; Huang, B. B.; Dai, Y. Nanoscale 2014, 6, 2009.
|
[26] |
Shi, M., Li, G.N.; Li, J. M.; Jin, X.; Tao, X. P.; Zeng, B.; Pidko, E. A.; Li, R. G.; Li, C. Angew. Chem., Int. Ed. 2020, 59, 6590.
|
[27] |
Tang, Z. K.; Yin, W. J.; Le, Z.; Wen, B.; Zhang, D. Y.; Liu, L. M.; Lau, W. M. Sci. Rep. 2016, 6, 32764.
|
[28] |
Mi, Y.; Wen, L. Y.; Wang, Z. J.; Cao, D. W.; Xu, R.; Fang, Y. G.; Yilong Zhou, Y. L.; Lei, Y. Nano Energy 2016, 30, 109.
|
[29] |
Fang, W. L.; Yao, S.; Wang, L.; Li, C. H. J. Alloys Compd. 2021, 891, 162081.
|
[30] |
Di, J.; Xia, J. X.; Chisholm, F. M.; Zhong, J.; Chen, C.; Cao, X. Z.; Dong, F.; Chi, Z.; Chen, H. L.; Weng, Y. X.; Xiong, J.; Yang, S. Z.; Li, H. M.; Liu, Z.; Dai, S. Adv. Mater. 2019, 31, 1807576.
|
[31] |
Lin, H. Y.; Lee, T. H.; Sie, C. Y. Int. J. Hydrogen Energy. 2008, 33, 4055.
|
[32] |
Zhang, G. K.; Zou, X.; Gong, J.; He, F. S.; Zhang, H.; Zhang, Q.; Liu, Y.; Yang, X.; Hu, B. J. Alloys Compd. 2006, 425, 76.
|
[33] |
Zhang, G. K.; He, F. S.; Zou, X.; Gong, J.; H. B.; Zhang, H.; Zhang, Q.; Liu, Y. J. Alloys Compd. 2007, 427, 82.
|
[34] |
Unal, U.; Matsumoto, Y.; Tamoto, N.; Koinuma, M.; Machida, M.; Izawa, K. J. Solid State Chem. 2006, 179, 33.
|
[35] |
Tian, M. K.; Shangguan, W. F. J. Inorg. Mater. 2011, 26, 513. (in Chinese)
|
( 田蒙奎, 上官文峰, 无机材料学报, 2011, 26, 513.)
|
|
[36] |
Zou, Z. G.; Ye, J. H.; Arakawa, H. Chem. Phys. Lett. 2000, 332, 271.
|
[37] |
Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082.
|
[38] |
Song, K.; Yang, J.; Jiang, P. F.; Gao, W. L.; Cong, R. H.; Yang, T. Eur. J. Inorg.Chem. 2015, 5786.
|
[39] |
Chiou, Y. C.; Kumar, U.; Wu, J. C. S. Appl. Catal., A 2009, 357, 73.
|
[40] |
Ma, Z. J.; Wu, K. C.; Sun, B. Z.; He, C. J. Mater. Chem. A 2015, 3, 8466.
|
[41] |
Lin, X. P.; Huang, F. Q.; Wang, W. D.; Shan, Z. C.; Shi, J. L. Dyes Pigm. 2008, 78, 39.
|
[42] |
Lin, X. P.; Huang, F. Q.; Wang, W. D.; Zhang, K. L. Appl. Catal., A 2006, 307, 257.
|
[43] |
Kako, T.; Kikugawa, N.; Ye, J. H. Catal. Today 2008, 131, 197.
|
[44] |
Hara, Y.; Takashima, T.; Kobayashi, R.; Abeyrathna, S.; Ohtani, B.; Irie, H. Appl. Catal. B 2017, 209, 663.
|
[45] |
Maeda, K.; Lu, D. L.; Domen, K. Chem. Eur. J. 2013, 19, 4986.
|
[46] |
Zhang, L.; Song, Y.; Feng, J. Y.; Fang, T.; Zhong, Y. J.; Li, Z. S.; Zou, Z. G. Int. J. Hydrogen Energy. 2014, 39, 7697.
|
[47] |
Zhong, Y. J.; Li, Z. S.; Zhao, X.; Fang, T.; Huang, H. T.; Qian, Q. F.; Chang, X. F.; Wang, P.; Yan, S. C.; Yu, Z. T.; Zou, Z. G. Adv. Funct. Mater. 2016, 26, 7156.
|
[48] |
Higashi, M.; Abe, R.; Teramura, K.; Takata, T.; Ohtani, B.; Domen, K. Chem. Phys. Lett. 2008, 452, 120.
|
[49] |
Yamasita, D.; Takata, T.; Hara, M.; Kondo, J. N.; Domen, K. Solid State Ionics 2004, 172, 591.
|
[50] |
Liu, M. Y.; You, W. S.; Lei, Z. B.; Takata, T.; Domen, K. ; Li, C. Chin. J. Catal. 2006, 27, 556.
|
[51] |
Wu, P.; Wang, J. R.; Zhao, J.; Guo, L. J.; Osterloh, F. E. Chem. Commun. 2014, 50, 15521.
|
[52] |
Patnaik, S.; Martha, S.; Parida, K. M. RSC Adv. 2016, 6, 46929
|
[53] |
Wang, J.; Yang, Z.; Gao, X. X.; Yao, W. Q.; Wei, W. Q.; Chen, X. J.; Zong, R. L.; Zhu, Y. F. Appl. Catal. B 2017, 217, 169.
|
[54] |
Qi, K. Z.; Lv, W. X.; Khan, I.; Liu, S. Y. Chin. J. Catal. 2020, 41, 114.
|
[55] |
Wang, D.K.; Zeng, H.; Xiong, X.; Wu, M. F.; Xia, M. R.; Xie, M. L.; Zou, J. P.; Luo, S. L. Sci. Bull. 2020, 65, 113.
|
[56] |
Zhang, H.; Wang, L.; Xu, X. X. Journal of Functional Polymers. 2019, 32, 140. (in Chinese)
|
( 张杭, 王磊, 徐航勋, 功能高分子学报, 2019, 32, 140.)
|
|
[57] |
Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48, 2109
|
[58] |
Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature. 2001, 414, 625.
|
[59] |
Pan, C.; Takata, T.; Nakabayashi, M.; Matsumoto, T.; Shibata, N.; Ikuhara, Y.; Domen, K. Angew. Chem., nt. Ed. 2015, 54, 2955.
|
[60] |
Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440, 295.
|
[61] |
Wang, L.; Wan, Y. Y.; Ding, Y. J.; Wu, S. K.; Zhang, Y.; Zhang, X. L.; Zhang, G. Q.; Xiong, Y. J.; Wu, X. J.; Yang, J. L.; Xu, H. X. Adv. Mater. 2017, 29, 1702428.
|
[62] |
Jing, D. W.; L. Guo, L. J. J. Phys. Chem. B 2006, 110, 11139.
|
[63] |
Zhu, C.; Liu, C. G.; Zhou, Y. J.; Fu, Y. J.; Guo, S. J.; Li, H.; Zhao, S. Q.; Huang, H.; Liu, Y.; Kang, Z. H. Appl. Catal. B 2017, 216, 114.
|
[64] |
Ye, H. F.; Shi, R.; Yang, X.; Fu, W. F.; Chen, Y. Appl. Catal. B 2018, 233, 70.
|
[65] |
Shi, R.; Ye, H. F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y. X.; Lin, Z. S.; Fu, W. F.; Che, C. M.; Chen, Y. Adv. Mater. 2018, 30, 1705941.
|
[66] |
Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F.; Stolarczyk, J. K. Nat. Energy 2018, 3, 862.
|
[67] |
Liu, W.; Cao, L. L.; Cheng, W. R.; Cao, Y. J.; Liu, X. K.; Zhang, W.; Mou, X. L.; Jin, L. L.; Zheng, X. S.; Che, W.; Liu, Q. H.; Yao, T.; Wei, S. Q. Angew. Chem., Int. Ed. 2017, 56, 9312.
|
[68] |
Lin, L. H.; Lin, Z. Y.; Zhang, J.; Cai, X.; Lin, W.; Yu, Z. Y.; Wang, X. C. Nat. Catal. 2020, 3, 649.
|
[69] |
Li, Y. R.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Zhang, Z.; Meng, F. Q.; Zhang, Q. H.; Huangfu, Y. L.; Zhao, D. M.; Gu, L.; Shen, S. H. Chem. Sci. 2021, 12, 3633.
|
[70] |
Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; Narushima, R.; Okunaka, S.; Shibata, N.; Takata, T.; Hisatomi, T.; Domen, K. Nature 2021, 598, 304.
|
[71] |
Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520.
doi: 10.1039/c3cs60378d pmid: 24413305 |
[72] |
Qi, Y.; Zhang, F. X. Acta Chim. Sinica 2022, 80, 827. (in Chinese)
|
( 祁育, 章福祥, 化学学报 2022, 80, 827.)
doi: 10.6023/A21120607 |
|
[73] |
Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Chem. Rev. 2014, 114, 9987.
|
[74] |
Wang, Y. J.; Bai, W. K.; Wang, H. Q.; Jiang, Y.; Han, S. L.; Sun, H. Q.; Li, Y. M.; Jiang, G. Y.; Zhao, Z.; Huan, Q. Dalton Trans. 2017, 46, 10734.
|
[75] |
Wang, Y. J.; Bai, W. K.; Han, S. L.; Wang, H. Q.; Wu, Q. H.; Chen, J.; Jiang, G. Y.; Zhao, Z.; Xu, C. M.; Huan, Q. Curr. Catal. 2017, 6, 50.
|
[76] |
Gan, J. Y.; Lu, X. H.; Tong, Y. X. Nanoscale 2014, 6, 7142.
|
[77] |
Liu, X.; Wang, F. Y.; Wang, Q. Phys. Chem. Chem. Phys. 2012, 14, 7894.
|
[78] |
McCrory, C. C. L.; Jung, S. H.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2015, 137, 4347.
|
[79] |
Sarnowska, M.; Bienkowski, K.; Barczuk, P. J.; Solarska, R.; Augustynski, J. Adv. Energy Mater. 2016, 6, 1600526.
|
[80] |
Sfaelou, S.; Pop, L. C.; Monfort, O.; Dracopoulos, V.; Lianos, P. Int. J. Hydrogen Energy 2016, 41, 5902.
|
[81] |
Han, L.; Dong, S. J.; Wang, E. K. Adv. Mater. 2016, 28, 9266.
|
[82] |
Kwong, W. L.; Lee, C. C.; Messinger, J. J. Phys. Chem. C 2016, 120, 10941.
|
[83] |
Sayama, K.; Nomura, A.; Zou, Z. G.; Abe, R.; Abe, Y.; Arakawa, H. Chem. Commun. 2003, 290, 2908.
|
[84] |
Quiñonero, J.; Villarreal, T. L.; Gómez, R. Appl. Catal. B 2016, 194, 141.
|
[85] |
Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Energy Environ. Sci. 2015, 8, 731.
|
[86] |
Antony, R. P.; Bassi, P. S.; Abdi, F. F.; Chiam, S. Y.; Ren, Y.; Barber, J.; Loo, J. S. C.; Wong, L. H. Electrochim. Acta 2016, 211, 173.
|
[87] |
Bai, J.; Wang, R.; Li, Y. P.; Tang, Y. Y.; Zeng, Q. Y.; Xia, L. G.; Li, X. J.; Li, J. H.; Li, C. L.; Zhou, B. A. J. Hazard. Mater. 2016, 311, 51.
|
[88] |
Xia, L. G.; Bai, J.; Li, J. H.; Zeng, Q. Y.; Li, X. J.; Zhou, B. X. Appl. Catal. B 2016, 183, 224.
|
[89] |
Ayoung, B.; Choi, W.; Park, H. Appl. Catal. B 2011, 110, 207.
|
[90] |
Warren, S. C.; Voïtchovsky, K.; Dotan, H.; Leroy, C. M.; Cornuz, M.; Stellacci, F.; Hébert, C.; Rothschild, A.; Grätzel, M. Nat. Mater. 2013, 12, 842.
doi: 10.1038/nmat3684 pmid: 23832125 |
[91] |
Tilley, S. D.; Cornuz, M.; Sivula, K.; Grätzel, M. Angew. Chem., Int. Ed. 2010, 49, 6405.
|
[92] |
Wang, L.; Lee, C. Y.; Mazare, A.; Lee, K.; Müller, J.; Spiecker, E.; Schmuki, P. Chem. Eur. J. 2014, 20, 77.
|
[93] |
LaTempa, T. J.; Feng, X. J.; Maggie Paulose, M.; Grimes, C. A. J. Phys. Chem. C 2009, 113, 16293.
|
[94] |
Mohapatra, S. K.; John, S. E.; Banerjee, S.; Misra, M. Chem. Mater. 2009, 21, 3048.
|
[95] |
Wu, L. Z.; Zhang, T. R. Sci. Bull. 2021, 66, 651.
|
[96] |
Li, Y. B.; Takata, T.; Cha, D.; Takanabe, K.; Tsutomu Minegishi, T.; Jun Kubota, J.; Domen, K. Adv. Mater. 2012, 25, 125.
|
[97] |
Xiao, Y. Q.; Feng, C.; Fu, J.; Wang, F. Z.; Li, C. L.; Kunzelmann, V. F.; Jiang, C. M.; Nakabayashi, M.; Shibata, N.; lan, D. ; Sharp, I. D.; Domen, K.; Li, Y. B. Nat. Catal. 2020, 3, 932.
|
[98] |
Zheng, J. Y.; Zhou, H. J.; D: Zou, Y. Q.; Wang, R. L.; Lyu, Y. H.; Jiang, S. P.; Wang, S. Y. Energy Environ. Sci. 2019, 12, 8.
|
[99] |
Zhang, Z. H.; Dua, R.; Zhang, L. B.; Zhu, H. B.; Zhang, H. N.; Wang, P. ACS Nano 2013, 7, 1709.
|
[100] |
Yang, W.; Moon, J. J. Mater. Chem. A 2019, 7, 20467.
|
[101] |
Wang, K.; Huang, D. W.; Yu, L.; Feng, K.; Li, L. T.; Harada, T.; Ikeda, S. ; Jiang, F. ACS Catal. 2019, 9, 3090.
|
[102] |
Yokoyama, D.; Minegishi, T.; Jimbo, K.; Hisatomi, T.; Ma, G.; Katayama, M.; Kubota, J.; Katagiri, H.; Domen, K. Appl. Phys. Express. 2010, 3, 101202.
|
[103] |
Paracchino, A.; Brauer, J. C.; Moser, J. E.; Thimsen, E.; Grätzel, M. J. Phys. Chem. C 2012, 116, 7341.
|
[104] |
Hacialioglu, S.; Meng, F.; Jin, S. Chem. Commun. 2012, 48, 1174.
|
[105] |
Gerischer, H. J. Electroanal. Chem. 1977, 82, 133.
|
[106] |
Paracchino, A.; Mathews, N.; Hisatomi, T.; Stefik, M.; Tilley, S. D.; Gratzel, M. Energy Environ. Sci. 2012, 5, 8673.
|
[107] |
Pan, L. F.; Kim, J. H.; Mayer, M. T.; Son, M.-K.; Ummadisingu, A.; Lee, J. S.; Hagfeldt, A.; Luo, J. S.; Grätzel, M. Nat. Catal. 2018, 1, 412.
|
[108] |
Yang, W.; Kim, J. H.; Hutter, O. S.; Phillips, L. J.; Tan, J.; Park, J.; Lee, H.; Major, J. D.; Lee, J. S.; Moon, J. Nat. Commun. 2020, 11, 861.
|
[109] |
Kim, J.; Yang, W.; Oh, Y.; Lee, H.; Lee, S.; Shin, H.; Kim, J.; Moon, J. J. Mater. Chem. A 2017, 5, 2180.
|
[110] |
Tang, R.; Wang, X.; Lian, W.; Huang, J.; Wei, Q.; Huang, M.; Yin, Y.; Jiang, C.; Yang, S.; Xing, G.; Chen, S.; Zhu, C.; Hao, X. J.; Green, M. A.; Chen, T. Nat. Energy. 2020, 5, 587.
|
[111] |
Zhou, Y.; Leng, M. Y.; Xia, Z.; Zhong, J.; Song, H. B.; Liu, X. S.; Yang, B.; Zhang, J. P.; Chen, J.; Zhou, K. H.; Han, J. B.; Cheng, Y. B.; Tang, J. Adv. Energy Mater. 2014, 4, 1301846.
|
[112] |
Guijarro, N.; Lutz, T.; Lana-Villarreal, T.; O'Mahony, F.; Gomez, R.; Haque, S. A. J. Phys. Chem. Lett. 2012, 3, 1351.
doi: 10.1021/jz3004365 pmid: 26286782 |
[113] |
Yang, W.; Kim, J. H.; Hutter, O. S.; Phillips, L. J.; Tan, J. W.; Park, J.; Lee, H.; Major, J. D.; Lee, J. S.; Moon, J. Nat. Commun. 2020, 11, 861.
|
[114] |
Tan, J. W.; Yang, W.; Lee, H.; Park, J.; Kim, K.; Hutter, O. S.; Phillips, L. J.;Shim, S.; Yun, J.; Park, Y.;Lee, J.; Major, J. D.; Moon, J. Appl. Catal. B 2021, 286, 119890.
|
[115] |
Zhou, H. P.; Feng, M. L.; Song, K. N.; Liao, B.; Wang, Y. C.; Liu, R. C.; Gong, X. N.; Zhang, D. K.; Cao, L. F.; Chen, S. J. Nanoscale 2019, 11, 22871.
|
[116] |
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 pmid: 15499015 |
[117] |
Hsueh, H. C.; Vass, H.; Clark, S. J.; Ackland.; Crain, J. Phys. Rev. B 1995, 51, 16750.
pmid: 9978682 |
[118] |
Wang, K.; Li, Y.; Li, L.; Wang, C.; Fang, Y.; Zhao, W.; Cai, H.; Sun, F.; Jiang, F. Appl. Catal. B 2021, 297, 120437.
|
[119] |
Yang, W.; Moon, J. ChemSusChem 2019, 12, 1889.
|
[120] |
Rovelli, L.; Tilley, S. D.; Sivula, K. ACS Appl. Mater. Interfaces 2013, 5, 8018.
|
[121] |
Jiang, F. ;, Gunawan; Harada, T.; Kuang, Y.; Minegishi, T.; Domen, K.; Ikeda, S. J. Am. Chem. Soc. 2015, 137, 13691.
doi: 10.1021/jacs.5b09015 pmid: 26479423 |
[122] |
Tay, Y. F.; Kaneko, H.; Chiam, S. Y.; Lie, S.; Zheng, Q. S.; Wu, B.; Hadke, S. S.; Su, Z. H.; Bassi, P. S.; Bishop, D.; Sum, T. C.; Minegishi, T.; Barber, J.; Domen, K.; Wong, L. H. Joule 2018, 2, 537.
|
[123] |
Feng, K.; Huang, D. W.; Li, L. T.; Wang, K.; Li, J. B.; Harada, T., Ikeda, S.; Jiang, F. Appl. Catal. B 2020, 268, 118438.
|
[124] |
Jiang, F.; Li, S. T.; Ozaki, C.; Harada, T.; Ikeda, S. Sol. RRL. 2018, 2, 1700205.
|
[125] |
Liu, G. J.; Ye, S.; Yan, P. L.; Xiong, F. Q.; Fu, P.; Wang, Z. L.; Chen, Z.; Shi, J. Y.; Li, C. Energy Environ. Sci. 2016, 9, 1327.
|
[126] |
Victoria, M.; Haegel, N.; Peters, I. M.; Sinton, R.; Jäger-Waldau, A.; del Cañizo, C.; Breyer, C.; Stocks, M.; Blakers, A.; Kaizuka, I.; Komoto, K.; Smets, A. Joule 2021, 5, 1041.
|
[127] |
Zeng, K.; Zhang, D. Prog. Energy Combust. Sci. 2010, 36, 307.
|
[128] |
Liu, J. Y.; Zhang, H.; Lei, M. J.; Xue, Y. Z. Renewable Energy 2014, 32, 1603. (in Chinese)
|
( 刘金亚, 张华, 雷明镜, 薛演振, 可再生能源 2014, 32, 1603.)
|
|
[129] |
Lin, J. Y.; Zhu, L. N.; Zhu, L. Y. Contemporary Chemical Industry 2021, 50, 2429. (in Chinese)
|
( 林佳怡, 朱丽娜, 朱凌岳, 当代化工 2021, 50, 2429.)
|
|
[130] |
Lewis, N. S. Science 2016, 351, aad1920.
|
[131] |
Nielander, A. C.; Shaner, M. R.; Papadantonakis, K. M.; Francis, S. A.; Lewis, N. S. Energy Environ. Sci. 2015, 8, 16.
|
[132] |
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446.
|
[133] |
Khaselev, O.; Turner, J. A. Science 1998, 280, 425.
pmid: 9545218 |
[134] |
Chatterjee, P.; Ambati, M. S. K.; Chakraborty, A. K.; Chakrabortty, S.; Biring, S.; Ramakrishna, S.; Wong, T. K. S.; Kumar, A.; Lawaniya, R.; Dalapati, G. K. Energy Convers. Manage. 2022, 261, 115648.
|
[135] |
Bonke, S. A.; Wiechen, M.; MacFarlane, D. R.; Spiccia, L. Energy Environ. Sci. 2015, 8, 2791.
|
[136] |
Sapountzi, F. M.; Gracia, J. M.; Weststrate, C. J.; Fredriksson, H. O. A.; Niemantsverdriet, J. W. Energy Combust. Sci. 2017, 58, 1.
|
[137] |
Ager, J. W.; Shaner, M. R.; Walczak, K. A.; Sharp, I. D.; Ardo, S. Energy Environ. Sci. 2015, 8, 2811.
|
[138] |
Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Science 2016, 352, aad4424.
|
[139] |
Zhang, K.; Ma, M.; Li, P.; Wang, D. H.; Park, J. H. Adv. Energy. Mater. 2016, 6, 1600602.
|
[140] |
Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J. Chem. Soc. Rev. 2017, 46, 4645.
|
[141] |
McCrory, C. C. L.; Jung, S. H.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2015, 137, 4347.
|
[142] |
Xu, B. M. Democracy and Science 2017, (05), 23. (in Chinese)
|
( 徐保民, 民主与科学 2017, (05), 23.)
|
|
[143] |
Welter, K.; Becker, J. P.; Finger, F.; Jaegermann, W.; Smirnov, V. Energy Fuels 2021, 35, 839.
|
[144] |
Finger, F.; Welter, K.; Urbain,F.; Smirnov, V.; Kaiser, B.; Jaegermann, W. Z. Phys. Chem. 2020, 234, 1055.
|
[145] |
Urbain, F.; Smirnov, V.; Becker, J. P.; Rau, U.; Ziegler, J.; Kaiser, B.; Jaegermann, W.; Finger, F. Sol. Energy Mater. Sol. Cells 2015, 140, 275.
|
[146] |
Xiao, X.; Liu, S. S.; Huang, D. K.; Lv, X. W.; Li, M.; Jiang, X. X.; Tao, L. M.; Yu, Z. H.; Shao, Y.; Wang, M. K.; Shen, Y. ChemSusChem 2019, 12, 434.
doi: 10.1002/cssc.201802512 pmid: 30520261 |
[147] |
Luo, J. S.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Science 2014, 345, 1593.
|
[148] |
Huang, H. Engineering Research Engineering from an Interdisciplinary Perspective. 2017, 9, 547. (in Chinese)
|
( 黄辉, 工程研究-跨学科视野中的工程, 2017, 9, 547.)
|
|
[149] |
Li, R. G. Chin. J. Catal. 2017, 38, 5.
|
[150] |
Wang, Z. L.; Wang, L. Z. Sci. China Mater. 2018, 61, 806.
|
[151] |
Wu, Z.; Sun, L.; Lin, C. J. Electrochemistry 2019, 25, 529. (in Chinese)
|
( 吴芝, 孙岚, 林昌健,
doi: 10.13208/j.electrochem.181147 |
|
[152] |
Yao, T. T.; An, X. R.; Han, H. X.; Chen, J. Q-J.; Li, C. Adv. Energy Mater. 2018, 8, 1800210.
|
[153] |
Saraswat, S. K.; Rodene, D. D.; Gupta, R. B. Renewable Sustainable Energy Rev. 2018, 89, 228.
|
[154] |
Stier, W.; Prezhdo, O. V. J. Mol. Struct.: THEOCHEM. 2003, 630, 33.
|
[155] |
Sang, L. X.; Zhang, Y. D.; Wang, J.; Liu, Z. L. Journal of Beijing University of Technology 2016, 42, 1082. (in Chinese)
|
( 桑丽霞, 张钰栋, 王军, 刘中良, 北京工业大学学报, 2016, 42, 1082.)
|
|
[156] |
Yang, J.; Sun, H. R.; Zhang, W. S.; Zhang, D. H.; Hu, Y.; Zhang, W.; Guo, Y. Q. Power Station Systems Engineering. 2022, 38, 79. (in Chinese)
|
( 杨锦, 孙浩然, 张文帅, 张定海, 胡洋, 张伟, 郭宇强, 电站系统工程, 2022, 38, 79.)
|
[1] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines [J]. Acta Chimica Sinica, 2024, 82(2): 190-212. |
[2] | Yuhan Wu, Dongdong Zhang, Hongyu Yin, Zhengnan Chen, Wen Zhao, Yuhua Chi. Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target [J]. Acta Chimica Sinica, 2023, 81(9): 1148-1156. |
[3] | Minghui He, Ziqiu Ye, Guiqing Lin, Sheng Yin, Xinyi Huang, Xu Zhou, Ying Yin, Bo Gui, Cheng Wang. Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis★ [J]. Acta Chimica Sinica, 2023, 81(7): 784-792. |
[4] | Jiawen Liu, Weihuang Lin, Weijia Wang, Xueyi Guo, Ying Yang. Synthesis and Photocatalytic Degradation of Cu1.94S-SnS Nano-heterojunction [J]. Acta Chimica Sinica, 2023, 81(7): 725-734. |
[5] | Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters [J]. Acta Chimica Sinica, 2023, 81(6): 657-668. |
[6] | Fei Li, Huili Ding, Chaozhong Li. Hydrotrifluoromethylation of Alkenes with a Fluoroform-Derived Trifluoromethylboron Complex [J]. Acta Chimica Sinica, 2023, 81(6): 577-581. |
[7] | Qi Xueping, Wang Fei, Zhang Jian. A Post-Synthetic Method for the Construction of Titanium-Based Metal Organic Frameworks and Their Applications [J]. Acta Chimica Sinica, 2023, 81(5): 548-558. |
[8] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Radical-Based Dehydroxylation of Hydroxyl Groups via Oxalates [J]. Acta Chimica Sinica, 2023, 81(11): 1609-1623. |
[9] | Chunhui Yang, Jingchao Chen, Xinhan Li, Li Meng, Kaimin Wang, Weiqing Sun, Baomin Fan. Difluoroallylation of Silanes under Photoirradiation [J]. Acta Chimica Sinica, 2023, 81(1): 1-5. |
[10] | Zhongshu Xie, Zhongxin Xue, Ziwen Xu, Qian Li, Hongyu Wang, Wei-Shi Li. Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production [J]. Acta Chimica Sinica, 2022, 80(9): 1231-1237. |
[11] | Yu Qi, Fuxiang Zhang. Photocatalytic Water Splitting for Hydrogen Production※ [J]. Acta Chimica Sinica, 2022, 80(6): 827-838. |
[12] | Heng Shu, Yide-Rigen Bao, Yong Na. Photocatalytic Oxidation of 5-Hydroxymethylfurfural Selectively into 2,5-Diformylfuran with CdS Nanotube [J]. Acta Chimica Sinica, 2022, 80(5): 607-613. |
[13] | Xue Gong, Xinguo Ma, Fengda Wan, Wangyang Duan, Xiaoling Yang, Jinrong Zhu. Study on the Electronic Structure and Optical Properties of Two-dimensional Monolayer MoSi2X4 (X=N, P, As) [J]. Acta Chimica Sinica, 2022, 80(4): 510-516. |
[14] | Xiaohan Yu, Wei Huang, Yanguang Li. Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks [J]. Acta Chimica Sinica, 2022, 80(11): 1494-1506. |
[15] | Bolong Jiang, Yanyan Cui, Shunjie Shi, Nan Jiang, Weiqiang Tan. Preparation of Highly Active Transition Bimetallic Nitride NiMoN Hydrogen Evolution Reaction (HER) Catalyst and Its Performance Study in Seawater Electrolysis [J]. Acta Chimica Sinica, 2022, 80(10): 1394-1400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||