Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (3): 246-252.DOI: 10.6023/A22120508 Previous Articles Next Articles
Perspective
投稿日期:
2022-12-23
发布日期:
2023-02-16
作者简介:
殷政, 博士、副教授、硕士生导师. 2015年博士毕业于广西师范大学, 导师曾明华教授, 随后进入陕西科技大学工作. 主要从事功能配位聚合物材料的晶态、固态及玻璃态结构转变、后合成修饰及功能调变相关研究. |
赵英博, 博士, 上海科技大学助理教授、研究员、博士生导师. 2017年博士毕业于加州大学伯克利分校, 导师Omar Yaghi教授. 2017至2021年在加州大学伯克利分校电子工程系从事博士后研究, 合作导师Ali Javey教授. 2021年8月加入上海科技大学. 主要开展分子框架结构设计合成、界面生长控制和功能器件构筑的相关研究. |
曾明华, 博士, 广西师范大学教授、博士生导师, 国家自然科学基金杰出青年科学基金获得者(2015), 国家“万人计划”科技创新领军人才(2017). 2004年博士毕业于中山大学, 导师陈小明教授. 在功能配位化学及溶液配位领域, 系统性开展基于固-液结构关联、固-固结构对应性的配位导向序列化串联反应过程与机理、多级结构演变及其物化性能效应研究. |
基金资助:
Zheng Yina,b(), Yingbo Zhaoc(), Minghua Zenga()
Received:
2022-12-23
Published:
2023-02-16
Contact:
E-mail: Supported by:
Share
Zheng Yin, Yingbo Zhao, Minghua Zeng. Challenge, Advance and Emerging Opportunities for Metal-Organic Framework Glasses: from Dynamic Chemistry to Material Science and Noncrystalline Physics[J]. Acta Chimica Sinica, 2023, 81(3): 246-252.
MOFs | Formula | Tm/K | Vitrification | Tg/K | Glass Properties and Functions |
---|---|---|---|---|---|
ZIF-4 | [Zn(Im)2] | 863 | MQ, MM | 570 | Strong/fragile liquid change, fragility index of 39, E=8.2 GPa, H=0.92 GPa, solid-state electrolyte for LMB |
GIS | [Zn(Im)2] | 857 | MQ | 564 | Fragility index of 39, E=8.5 GPa, H=0.9 GPa |
ZIF-62 | [Zn(Im)1.75(bIm)0.25] [Zn(Im)2-x(bIm)x] (x=0.03~0.35) [Co(Im)1.7(bIm)0.3] [Zn1-xCox(Im)1.7(bIm)0.3] (x=0.007~0.5) | 708 643~721 705 672~725 | MQ MQ MQ MQ | 595 565~602 563 604~607 | Properties for family: (i) ultrahigh glass-forming ability, fragility index of 23, viscosity of 105 Pa•s at Tm, Poisson’s ratio of 0.45; mixed metal and ligand ratio modified Tm and Tg; (ii) fracture toughness of 0.1 MPa•m0.5, anomalous brittle-to-ductile transition, creep resistance, low strain-rate sensitivity, (iii) CO2 uptake of 0.75 mmol•g-1 (273 K, 95 kPa) for agZIF-62(Co), selective sorption to n-butane, propane and propylene; glass membrane for H2/CH4, CO2/N2 and CO2/CH4 separation; (iv) transmittance up to 90% for visible and near-infrared wave, 1.5~4.8 μm mid-infrared luminescence, strong NLO response with modulation depth of 63.85%; (v) anode with exceptional cycling-induced capacity enhancement for lithium-ion batteries, flexible electrodes for oxygen evolution reaction |
ZIF-76 | [Zn(Im)1.33(5-mbIm)0.67] | 724 | MQ | 583 | Permanent gas accessible porosity with CO2 adsorption of 4% (w) at 273 K |
ZIF-8 | [Zn(mIm)2] (Ionic liquid incorporated) | 654 | MQ | 595 | High Tg/Tm of 0.91, E=5.42 GPa, H=0.73 GPa, a four-fold increase of glass’ porosity after ionic liquid washing |
Others | [Ag(pL2)(CF3SO3)] [Ti16O16(BPA)x(OR)32−x] [Co(pybz)2]4n | 544 | MQ, MM VE SP | 434 — 568 | Adsorption capacity of 9.2 cm3/g (CO2, 195 K) and 160 cm3/g (benzene vapor) 77 K N2 accessible internal surface area of 267 m2/g Fragility index of 83, supercooled liquid range of 26 K, thermal stable for 104 s at Tg, CH3OH and CO2 accessible porosity |
— | |||||
— |
MOFs | Formula | Tm/K | Vitrification | Tg/K | Glass Properties and Functions |
---|---|---|---|---|---|
ZIF-4 | [Zn(Im)2] | 863 | MQ, MM | 570 | Strong/fragile liquid change, fragility index of 39, E=8.2 GPa, H=0.92 GPa, solid-state electrolyte for LMB |
GIS | [Zn(Im)2] | 857 | MQ | 564 | Fragility index of 39, E=8.5 GPa, H=0.9 GPa |
ZIF-62 | [Zn(Im)1.75(bIm)0.25] [Zn(Im)2-x(bIm)x] (x=0.03~0.35) [Co(Im)1.7(bIm)0.3] [Zn1-xCox(Im)1.7(bIm)0.3] (x=0.007~0.5) | 708 643~721 705 672~725 | MQ MQ MQ MQ | 595 565~602 563 604~607 | Properties for family: (i) ultrahigh glass-forming ability, fragility index of 23, viscosity of 105 Pa•s at Tm, Poisson’s ratio of 0.45; mixed metal and ligand ratio modified Tm and Tg; (ii) fracture toughness of 0.1 MPa•m0.5, anomalous brittle-to-ductile transition, creep resistance, low strain-rate sensitivity, (iii) CO2 uptake of 0.75 mmol•g-1 (273 K, 95 kPa) for agZIF-62(Co), selective sorption to n-butane, propane and propylene; glass membrane for H2/CH4, CO2/N2 and CO2/CH4 separation; (iv) transmittance up to 90% for visible and near-infrared wave, 1.5~4.8 μm mid-infrared luminescence, strong NLO response with modulation depth of 63.85%; (v) anode with exceptional cycling-induced capacity enhancement for lithium-ion batteries, flexible electrodes for oxygen evolution reaction |
ZIF-76 | [Zn(Im)1.33(5-mbIm)0.67] | 724 | MQ | 583 | Permanent gas accessible porosity with CO2 adsorption of 4% (w) at 273 K |
ZIF-8 | [Zn(mIm)2] (Ionic liquid incorporated) | 654 | MQ | 595 | High Tg/Tm of 0.91, E=5.42 GPa, H=0.73 GPa, a four-fold increase of glass’ porosity after ionic liquid washing |
Others | [Ag(pL2)(CF3SO3)] [Ti16O16(BPA)x(OR)32−x] [Co(pybz)2]4n | 544 | MQ, MM VE SP | 434 — 568 | Adsorption capacity of 9.2 cm3/g (CO2, 195 K) and 160 cm3/g (benzene vapor) 77 K N2 accessible internal surface area of 267 m2/g Fragility index of 83, supercooled liquid range of 26 K, thermal stable for 104 s at Tg, CH3OH and CO2 accessible porosity |
— | |||||
— |
[1] |
Special issue for Science's 125th anniversary. Science 2005, 309, 78.
|
[2] |
Wang W. H. Prog. Phys. 2013, 33, 177. (in Chinese)
|
(汪卫华, 物理学进展, 2013, 33, 177.)
|
|
[3] |
Zhang Q. Y.; Wang W. C.; Jiang Z. H. Chin. Sci. Bull. 2016, 13, 1407. (in Chinese)
|
(张勤远, 王伟超, 姜中宏, 科学通报, 2016, 13, 1407.)
|
|
[4] |
Debenedetti P. G.; Stillinger F. H. Nature 2001, 410, 259.
doi: 10.1038/35065704 |
[5] |
Li M. X.; Liu Y. H.; Wang W. H.; Zhao S. F.; Lu Z.; Hirata A.; Wen P.; Bai H. Y.; Chen M.; Schroers J. Nature 2019, 569, 99.
doi: 10.1038/s41586-019-1145-z |
[6] |
Zachariasen W. H. J. Am. Chem. Soc. 1932, 54, 3841.
doi: 10.1021/ja01349a006 |
[7] |
Flory P. J. J. Chem. Phys. 1949, 17, 303.
doi: 10.1063/1.1747243 |
[8] |
Bernal J. D. Nature 1960, 185, 68.
doi: 10.1038/185068a0 |
[9] |
Chen X. M.; Zhang J. P. Metal-Organic Framework Materials, Chemical Industry Press, Beijing, 2017. (in Chinese)
|
(陈小明, 张杰鹏, 金属-有机框架材料, 化学工业出版社, 北京, 2017.)
|
|
[10] |
Furukawa H.; Cordova K. E.; O'Keeffe M.; Yaghi O. M. Science 2013, 341, 974.
|
[11] |
Kitagawa S. Acc. Chem. Res. 2017, 50, 514.
doi: 10.1021/acs.accounts.6b00500 |
[12] |
Bennett T. D.; Goodwin A. L.; Dove M. T.; Keen D. A.; Tucker M. G.; Barney E. R.; Soper A. K.; Bithell E. G.; Tan J. C.; Cheetham A. K. Phys. Rev. Lett. 2010, 104, 115503.
doi: 10.1103/PhysRevLett.104.115503 |
[13] |
Bennett T. D.; Yue Y.; Li P.; Qiao A.; Tao H.; Greaves N. G.; Richards T.; Lampronti G. I.; Redfern S. A. T.; Blanc F.; Farha O. K.; Hupp J. T.; Cheetharm A. K.; Keen D. A. J. Am. Chem. Soc. 2016, 138, 3484.
doi: 10.1021/jacs.5b13220 pmid: 26885940 |
[14] |
Gaillac R.; Pullumbi P.; Beyer K. A.; Chapman K. W.; Keen D. A.; Bennett T. D.; Coudert F. X. Nat. Mater. 2017, 16, 1149.
doi: 10.1038/nmat4998 pmid: 29035353 |
[15] |
Widmer R. N.; Lampronti G. I.; Anzellini S.; Gaillac R.; Farsang S.; Zhou C.; Belenguer A. M.; Wilson C. W.; Palmer H.; Kleppe A. K.; Wharmby M. T.; Yu X.; Cohen S. M.; Telfer S. G.; Redfern S. A. T.; Coudert F. X.; MacLeod S. G.; Bennett T. D. Nat. Mater. 2019, 18, 370.
doi: 10.1038/s41563-019-0317-4 pmid: 30886398 |
[16] |
Longley L.; Calahoo C.; Limbach R.; Xia Y.; Tuffnell J. M.; Sapnik A. F.; Thorne M. F.; Keeble D. S.; Keen D. A.; Wondraczek L.; Bennett T. D. Nat. Commun. 2020, 11, 5800.
doi: 10.1038/s41467-020-19598-9 pmid: 33199681 |
[17] |
Shaw B. K.; Hughes A. R.; Ducamp M.; Moss S.; Debnath A.; Sapnik A. F.; Thorne M. F.; McHugh L. N.; Pugliese A.; Keeble D. S.; Chater P.; Bermudez-Garcia J. M.; Moya X.; Saha S. K.; Keen D. A.; Coudert F.-X.; Blanc F.; Bennett T. D. Nat. Chem. 2021, 13, 778.
doi: 10.1038/s41557-021-00681-7 |
[18] |
Bennett T. D.; Tan J. C.; Yue Y. Z.; Baxter E.; Ducati C.; Terrill N. J.; Yeung H. H. M.; Zhou Z. F.; Chen W. L.; Henke S.; Cheetham A. K.; Greaves G. N. Nat. Commun. 2015, 6, 8079.
doi: 10.1038/ncomms9079 pmid: 26314784 |
[19] |
Greaves G. N. In Springer Handbook of Glass, Eds.: Musgraves, J. D.; Hu, J.; Calvez, L., Springer International Publishing, Cham, 2019, pp. 719-770.
|
[20] |
Qiao A.; Bennett T. D.; Tao H. Z.; Krajnc A.; Mali G.; Doherty C. M.; Thornton A. W.; Mauro J. C.; Greaves G. N.; Yue Y. Z. Sci. Adv. 2018, 4, 6827.
doi: 10.1126/sciadv.aao6827 pmid: 29536040 |
[21] |
Zheng Q.; Zhang Y.; Montazerian M.; Gulbiten O.; Mauro J. C.; Zanotto E. D.; Yue Y. Chem. Rev. 2019, 119, 7848.
doi: 10.1021/acs.chemrev.8b00510 |
[22] |
Madsen R. S. K.; Qiao A.; Sen J.; Hung I.; Chen K.; Gan Z.; Sen S.; Yue Y. Science 2020, 367, 1473.
doi: 10.1126/science.aaz0251 |
[23] |
Yan J.; Gao C.; Qi S.; Jiang Z.; Jensen L. R.; Zhan H.; Zhang Y.; Yue Y. Nano Energy 2022, 103, 107779.
doi: 10.1016/j.nanoen.2022.107779 |
[24] |
Gao C.; Jiang Z.; Qi S.; Wang P.; Jensen L. R.; Johansen M.; Christensen C. K.; Zhang Y.; Ravnsbaek D. B.; Yue Y. Adv. Mater. 2022, 34, 2110048.
doi: 10.1002/adma.v34.10 |
[25] |
Horike S.; Umeyama D.; Inukai M.; Itakura T.; Kitagawa S. J. Am. Chem. Soc. 2012, 134, 7612.
doi: 10.1021/ja301875x |
[26] |
Umeyama D.; Horike S.; Inukai M.; Itakura T.; Kitagawa S. J. Am. Chem. Soc. 2015, 137, 864.
doi: 10.1021/ja511019u pmid: 25530162 |
[27] |
Ogawa T.; Takahashi K.; Kurihara T.; Nagarkar S. S.; Ohara K.; Nishiyama Y.; Horike S. Chem. Mater. 2022, 34, 5832.
doi: 10.1021/acs.chemmater.2c00494 |
[28] |
Zhao Y. B.; Lee S. Y.; Becknell N.; Yaghi O. M.; Angell C. A. J. Am. Chem. Soc. 2016, 138, 10818.
doi: 10.1021/jacs.6b07078 |
[29] |
Hou J.; Chen P.; Shukla A.; Krajnc A.; Wang T.; Li X.; Doasa R.; Tizei L. H. G.; Chan B.; Johnstone D. N.; Lin R.; Schulli T. U.; Martens I.; Appadoo D.; Ari M. S.; Wang Z.; Wei T.; Lo S.-C.; Lu M.; Li S.; Namdas E. B.; Mali G.; Cheetham A. K.; Collins S. M.; Chen V.; Wang L.; Bennett T. D. Science 2021, 374, 621.
doi: 10.1126/science.abf4460 |
[30] |
Lin R.; Li X.; Krajnc A.; Li Z.; Li M.; Wang W.; Zhuang L.; Smart S.; Zhu Z.; Appadoo D.; Harmer J. R.; Wang Z.; Buzanich A. G.; Beyer S.; Wang L.; Mali G.; Bennett T. D.; Chen V.; Hou J. Angew. Chem. Int. Ed. 2022, 61, e202112880.
|
[31] |
Ali M. A.; Ren J.; Zhao T.; Liu X.; Hua Y.; Yue Y.; Qiu J. ACS Omega 2019, 4, 12081.
doi: 10.1021/acsomega.9b01559 |
[32] |
Ali M. A.; Liu X.; Li Y.; Ren J.; Qiu J. Inorg. Chem. 2020, 59, 8380.
doi: 10.1021/acs.inorgchem.0c00806 |
[33] |
Sun K.; Tan D.; Fang X.; Xia X.; Lin D.; Song J.; Lin Y.; Liu Z.; Gu M.; Yue Y.; Qiu J. Science 2022, 375, 307.
doi: 10.1126/science.abj2691 pmid: 35050658 |
[34] |
Yin Z.; Zhang Y.-B.; Yu H.-B.; Zeng M.-H. Sci. Bull. 2020, 65, 1432.
doi: 10.1016/j.scib.2020.05.003 |
[35] |
Yin Z.; Zhao Y.; Wan S.; Yang J.; Shi Z.; Peng S.-X.; Chen M.-Z.; Xie T.-Y.; Zeng T.-W.; Yamamuro O.; Nirei M.; Akiba H.; Zhang Y.-B.; Yu H.-B.; Zeng M.-H. J. Am. Chem. Soc. 2022, 144, 13021.
doi: 10.1021/jacs.2c04532 |
[36] |
Peng S.-X.; Yin Z.; Zhang T.; Yang Q.; Yu H.-B.; Zeng M.-H. J. Chem. Phys. 2022, 157, 104501.
doi: 10.1063/5.0109885 |
[37] |
Ma N.; Horike S. Chem. Rev. 2022, 122, 4163.
doi: 10.1021/acs.chemrev.1c00826 |
[38] |
Nozari V.; Calahoo C.; Tuffnell J. M.; Keen D. A.; Bennett T. D.; Wondraczek L. Nat. Commun. 2021, 12, 5703.
doi: 10.1038/s41467-021-25970-0 pmid: 34588462 |
[39] |
Thorne M. F.; Gomez M. L. R.; Bumstead A. M.; Li S.; Bennett T. D. Green Chem. 2020, 22, 2505.
doi: 10.1039/D0GC00546K |
[40] |
Li S.; Limbach R.; Longley L.; Shirzadi A. A.; Walmsley J. C.; Johnstone D. N.; Midgley P. A.; Wondraczek L.; Bennett T. D. J. Am. Chem. Soc. 2019, 141, 1027.
doi: 10.1021/jacs.8b11357 |
[41] |
To T.; Sorensen S. S.; Stepniewska M.; Qiao A.; Jensen L. R.; Bauchy M.; Yue Y.; Smedskjaer M. M. Nat. Commun. 2020, 11, 2593.
doi: 10.1038/s41467-020-16382-7 |
[42] |
Widmer R. N.; Bumstead A. M.; Jain M.; Bennett T. D.; Michler J. J. Am. Chem. Soc. 2021, 143, 20717.
doi: 10.1021/jacs.1c08368 pmid: 34854678 |
[43] |
Zhou C.; Longley L.; Krajnc A.; Smales G. J.; Qiao A.; Erucar I.; Doherty C. M.; Thornton A. W.; Hill A. J.; Ashling C. W.; Qazvini O. T.; Lee S. J.; Chater P. A.; Terrill N. J.; Smith A. J.; Yue Y.; Mali G.; Keen D. A.; Telfer S. G.; Bennett T. D. Nat. Commun. 2018, 9, 5042.
doi: 10.1038/s41467-018-07532-z |
[44] |
Frentzel-Beyme L.; Kloss M.; Pallach R.; Salamon S.; Moldenhauer H.; Landers J.; Wende H.; Debus J.; Henke S. J. Mater. Chem. A 2019, 7, 985.
doi: 10.1039/c8ta08016j |
[45] |
Frentzel-Beyme L.; Kloss M.; Kolodzeiski P.; Pallach R.; Henke S. J. Am. Chem. Soc. 2019, 141, 12362.
doi: 10.1021/jacs.9b05558 pmid: 31288513 |
[46] |
Wang Y.; Fin H.; Ma Q.; Mo K.; Mao H.; Feldhoff A.; Cao X.; Li Y.; Pan F.; Jiang Z. Angew. Chem. Int. Ed. 2020, 59, 4365.
doi: 10.1002/anie.v59.11 |
[47] |
Jiang G.; Qu C.; Xu F.; Zhang E.; Lu Q.; Cai X.; Hausdorf S.; Wang H.; Kaskel S. Adv. Funct. Mater. 2021, 31, 2104300.
doi: 10.1002/adfm.v31.43 |
[48] |
Zeng M. H.; Feng X. L.; Chen X. M. Dalton Trans. 2004, 2217.
|
[49] |
Zeng M. H.; Wang Q. X.; Tan Y. X.; Hu S.; Zhao H. X.; Long L. S.; Kurmoo M. J. Am. Chem. Soc. 2010, 132, 2561.
doi: 10.1021/ja908293n |
[50] |
Yin Z.; Wang Q. X.; Zeng M. H. J. Am. Chem. Soc. 2012, 134, 4857.
doi: 10.1021/ja211381e |
[51] |
Zeng M. H.; Yin Z.; Tan Y. X.; Zhang W. X.; He Y. P.; Kurmoo M. J. Am. Chem. Soc. 2014, 136, 4680.
doi: 10.1021/ja500191r |
[52] |
Yin Z.; Wan S.; Yang J.; Kurmoo M.; Zeng M. H. Coord. Chem. Rev. 2019, 378, 500.
doi: 10.1016/j.ccr.2017.11.015 |
[53] |
Zeng M.-H.; Tan Y.-X.; He Y.-P.; Yin Z.; Chen Q.; Kurmoo M. Inorg. Chem. 2013, 52, 2353.
doi: 10.1021/ic301857h |
[54] |
Shekhah O.; Liu J.; Fischer R. A.; Woll C. Chem. Soc. Rev. 2011, 40, 1081.
doi: 10.1039/c0cs00147c pmid: 21225034 |
[55] |
Xu R. R.; Yu J. H.; Yan W. F. Prog. Chem. 2020, 32, 1017. (in Chinese)
|
(徐如人, 于吉红, 闫文付, 化学进展, 2020, 32, 1017.)
doi: 10.7536/PC200428 |
[1] | Yang Liu, Fengqin Gao, Zhanying Ma, Yinli Zhang, Wuwu Li, Lei Hou, Xiaojuan Zhang, Yaoyu Wang. Co-based Metal-organic Framework for High-efficiency Degradation of Methylene Blue in Water by Peroxymonosulfate Activation [J]. Acta Chimica Sinica, 2024, 82(2): 152-159. |
[2] | Bo Sun, Wenwen Ju, Tao Wang, Xiaojun Sun, Ting Zhao, Xiaomei Lu, Feng Lu, Quli Fan. Preparation of Highly-dispersed Conjugated Polymer-Metal Organic Framework Nanocubes for Antitumor Application [J]. Acta Chimica Sinica, 2023, 81(7): 757-762. |
[3] | Fengbin Zheng, Kun Wang, Tian Lin, Yinglong Wang, Guodong Li, Zhiyong Tang. Research Progress on the Preparation of Metal-Organic Frameworks Encapsulated Metal Nanoparticle Composites and Their Catalytic Applications★ [J]. Acta Chimica Sinica, 2023, 81(6): 669-680. |
[4] | Kaiqing Wang, Shuo Yuan, Wangdong Xu, Dan Huo, Qiulin Yang, Qingxi Hou, Dehai Yu. Preparation and Adsorption Properties of ZIF-8@B-CNF Composite Aerogel [J]. Acta Chimica Sinica, 2023, 81(6): 604-612. |
[5] | Junchang Chen, Mingxing Zhang, Shuao Wang. Research Progress of Synthesis Methods for Crystalline Porous Materials [J]. Acta Chimica Sinica, 2023, 81(2): 146-157. |
[6] | Xiaojuan Li, Ziyu Ye, Shuhan Xie, Yongjing Wang, Yonghao Wang, Yuancai Lv, Chunxiang Lin. Study on Performance and Mechanism of Phenol Degradation through Peroxymonosulfate Activation by Nitrogen/Chlorine Co-doped Porous Carbon Materials [J]. Acta Chimica Sinica, 2022, 80(9): 1238-1249. |
[7] | Min Cheng, Shihui Wang, Lei Luo, Li Zhou, Kexin Bi, Yiyang Dai, Xu Ji. Large-Scale Computational Screening of Metal-Organic Framework Membranes for Ethane/Ethylene Separation [J]. Acta Chimica Sinica, 2022, 80(9): 1277-1288. |
[8] | Xu Yan, Hemi Qu, Ye Chang, Xuexin Duan. Application of Metal-Organic Frameworks in Gas Pre-concentration, Pre-separation and Detection [J]. Acta Chimica Sinica, 2022, 80(8): 1183-1202. |
[9] | Shaobing Yan, Long Jiao, Chuanxin He, Hailong Jiang. Pyrolysis of ZIF-67/Graphene Composite to Co Nanoparticles Confined in N-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction [J]. Acta Chimica Sinica, 2022, 80(8): 1084-1090. |
[10] | Linan Cao, Min Wei. Recent Progress of Electric Conductive Metal-Organic Frameworks Thin Film [J]. Acta Chimica Sinica, 2022, 80(7): 1042-1056. |
[11] | Chenfan Xie, Yu-Ping Xu, Ming-Liang Gao, Zhong-Ning Xu, Hai-Long Jiang. MOF-Stabilized Pd Single Sites for CO Esterification to Dimethyl Carbonate [J]. Acta Chimica Sinica, 2022, 80(7): 867-873. |
[12] | Ben Niu, Zhenyu Zhai, Xiaoke Hao, Tingli Ren, Congju Li. Flexible Acetone Gas Sensor based on ZIF-8/Polyacrylonitrile (PAN) Composite Film [J]. Acta Chimica Sinica, 2022, 80(7): 946-955. |
[13] | Fang Liu, Tingting Pan, Xiurong Ren, Weiren Bao, Jiancheng Wang, Jiangliang Hu. Research on Preparation and Benzene Adsorption Performance of HCDs@MIL-100(Fe) Adsorbents [J]. Acta Chimica Sinica, 2022, 80(7): 879-887. |
[14] | Shihui Wang, Xiaoyu Xue, Min Cheng, Shaochen Chen, Chong Liu, Li Zhou, Kexin Bi, Xu Ji. High-Throughput Computational Screening of Metal-Organic Frameworks for CH4/H2 Separation by Synergizing Machine Learning and Molecular Simulation [J]. Acta Chimica Sinica, 2022, 80(5): 614-624. |
[15] | Junmin Chen, Chengqian Cui, Hanlin Liu, Guodong Li. Study on the Selective Hydrogenation of Quinoline Catalyzed by Composites of Metal-Organic Framework and Pt Nanoparticles※ [J]. Acta Chimica Sinica, 2022, 80(4): 467-475. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||