Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (5): 548-558.DOI: 10.6023/A23020041 Previous Articles
Review
投稿日期:
2023-02-20
发布日期:
2023-03-28
作者简介:
齐学平, 中国科学院福建物质结构研究所无机化学专业在读硕士研究生, 师从王飞研究员. 目前主要研究方向为钛基金属有机框架材料的设计、合成及应用. |
王飞, 中国科学院福建物质结构研究所研究员, 博士生导师. 2012年入选“中科院青年创新促进会”会员. 2014年获得卢嘉锡青年人才奖, 同年入选中国科学院福建物质结构研究所(海西研究院)“春苗”青年人才. 2019年获福建省自然科学二等奖(排名第二). 从事金属有机框架材料研究, 在钛基金属有机框架材料、手性金属有机框架材料、沸石型金属有机框架材料的设计合成及其在气体分离、催化/光电催化、手性识别拆分等领域取得系列进展, 已在Chem. Soc. Rev., Angew. Chem., Int. Ed., ACS Materials Lett., J. Mater. Chem A.及ACS Appl. Mater. Interfaces等期刊以第一和通讯作者发表论文100多篇. |
张健, 中国科学院福建物质结构研究所研究员, 博士生导师. 现任中国科学院福建物质结构研究所副所长, 结构化学国家重点实验室副主任. 2014年获国家杰出青年基金资助. 主要研究方向为团簇和多孔催化材料. 目前作为课题负责人承担有国家杰出青年基金, 中国科学院“先导B”课题, 国家自然科学基金重点项目等多项研究课题. 已在系列国际知名期刊上发表论文300多篇, 论文被他人正面引用超过2万次, H因子82. |
基金资助:
Xueping Qi, Fei Wang(), Jian Zhang
Received:
2023-02-20
Published:
2023-03-28
Contact:
*E-mail: wangfei04@fjirsm.ac.cn
Supported by:
Share
Xueping Qi, Fei Wang, Jian Zhang. A Post-Synthetic Method for the Construction of Titanium-Based Metal Organic Frameworks and Their Applications[J]. Acta Chimica Sinica, 2023, 81(5): 548-558.
Name | PSM | Ti source | Solvent | Ti percentage (max) | Condition | BET surface area/(m2•g-1) | Ref. |
---|---|---|---|---|---|---|---|
UiO-66(Zr) | 离子交换 | TiCp2Cl2 TiCl4(THF)2 TiBr4 | DMF | w=12.0% w=37.9% w=1.4% | 85 ℃, 120 h | 1259 1365 1291 | [ |
UiO-66(Zr/Ce) | 离子交换 | TiCl4(THF)2 | DMF | x=20.2% | 120 ℃, 96 h | 1019 | [ |
UiO-66(Zr)-NH2,1(Zr) | 离子交换 | TiCl4(THF)2 | DMF | x=28.4% | 85 ℃, 120 h | — | [ |
Zr-NDC | 离子交换 | TiCl4(THF)2 | DMF | x=26.7% | 85 ℃, 120 h | 1062.6 | [ |
Zr-DNC-NH2 | 离子交换 | TiCl4(THF)2 | DMF | x=28.3% | 85 ℃, 120 h | 1026.7 | [ |
UiO-66(Ce) | 离子交换 | TiCp2Cl2 | DMF | — | 100 ℃, 3 h | 1032.9 | [ |
(Ti/Ce)UiO-X@TiO2 (X=H, Br, NO2, NH2, N) | 离子交换 | TiCp2Cl2 | DMF | — | 100 ℃, 3 h | — | [ |
PCN-224 | 离子交换 | TiCp2Cl2 | DMF | x=38.6% | 120 ℃, 192 h | — | [ |
UiO-66(Zr) | 离子交换 | TiCp2Cl2 | DMF | x≤60% | 120 ℃, 8 h, microwave | 965.8 | [ |
MOF-5(Zn) | 离子交换 | TiCl3(THF)3 | DMF | x=2% | room temperature, 7 d, stir | about 650 | [ |
MIL-100(Sc) | 离子交换 | TiCl3(THF)3 | DMF | x=88.0% | 120 ℃, 24 h, N2, | — | [ |
PCN-333(Sc) | 离子交换 | TiCl3(THF)3 | DMF | x=48.8% | 120 ℃, 24 h, N2 | — | [ |
MOF-74(Zn) | 离子交换 | TiCl3(THF)3 | DMF | x=94.7% | 120 ℃, 24 h, N2 | — | [ |
MOF-74(Mg) | 离子交换 | TiCl3(THF)3 | DMF | x=37.9% | 120 ℃, 24 h, N2, | — | [ |
NU-1200(Zr) | 离子插入 | Ti(OiPr)4 | CH2Cl2 | x=25% | 60 ℃, 24 h | — | [ |
NU-1000(Zr) | 离子插入 | Ti(OiPr)4 | Heptane | w=5.16% | overnight, N2 | 1930 | [ |
NU-1008(Zr) | 离子插入 | Ti(OiPr)4 | Isopropanol | x=27.3% | 80 ℃, 40 h | — | [ |
UiO-66(Zr) | 离子插入 | TiCl4(THF)2 | DMF | X=21.3%~22.3% | 90 ℃, 120 h | 1200 | [ |
2D UiO-67(Hf)-NS | 离子插入 | TiCl4(THF)2 | DMF | x=14.58% | 120 ℃, 120 h | — | [ |
H-UiO-66(Zr) | 离子交换 | TiCp2Cl2 | DMF | x=3.83% | 85 ℃, 120 h | 1220 | [ |
H-UiO-66(Zr/Ti) | 离子插入 | TiCp2Cl2 TiO(acac)2 TiO(Bu)4 Ti-Citrate | MeOH; H2O | x=6.42% x=7.14% x=14.47% x=4.93% | 65 ℃, 12 h, backflow | 1031 1092 1588 859 | [ |
IRMOF-3 | 配体修饰 | Ti(OiPr)4 | CHCl3 | w=4.3% | 25 ℃, 24 h, N2 | 870 | [ |
MIL-47-NH2 | 配体修饰 | TiO(acac)2 | Toluene | — | 90 ℃, 40 h, Ar, stir | — | [ |
UiO-67-bpydc-MoO2Cl2 | 配体修饰和离子交换 | TiCl4(THF)2 | DMF | x=1.15% | 120 ℃, 144 h | — | [ |
UiO-66(Zr)-NH2 | 离子交换 | TiCl4(THF)2 | DMF | x=57% | 120 ℃, 384 h | 787 | [ |
MOF-525(Zr) | 离子交换 | TiCl4(THF)2 | DMF | x=90% | 85 ℃, 120 h | 2780 | [ |
UiO-67(Zr)-Ru | 离子交换 | TiCl4(THF)2 | DMF | x=54.5% | 120 ℃, 18 h | 1694 | [ |
UiO-66(Zr)-NH2 | 离子交换 | TiCl4(THF)2 | DMF | x=10.4% | 120 ℃, 96 h | 770 | [ |
UiO-66(Zr)-NO2 | 离子交换 | TiCl4(THF)2 | DMF | x=10.4% | 120 ℃, 96 h | 590 | [ |
Name | PSM | Ti source | Solvent | Ti percentage (max) | Condition | BET surface area/(m2•g-1) | Ref. |
---|---|---|---|---|---|---|---|
UiO-66(Zr) | 离子交换 | TiCp2Cl2 TiCl4(THF)2 TiBr4 | DMF | w=12.0% w=37.9% w=1.4% | 85 ℃, 120 h | 1259 1365 1291 | [ |
UiO-66(Zr/Ce) | 离子交换 | TiCl4(THF)2 | DMF | x=20.2% | 120 ℃, 96 h | 1019 | [ |
UiO-66(Zr)-NH2,1(Zr) | 离子交换 | TiCl4(THF)2 | DMF | x=28.4% | 85 ℃, 120 h | — | [ |
Zr-NDC | 离子交换 | TiCl4(THF)2 | DMF | x=26.7% | 85 ℃, 120 h | 1062.6 | [ |
Zr-DNC-NH2 | 离子交换 | TiCl4(THF)2 | DMF | x=28.3% | 85 ℃, 120 h | 1026.7 | [ |
UiO-66(Ce) | 离子交换 | TiCp2Cl2 | DMF | — | 100 ℃, 3 h | 1032.9 | [ |
(Ti/Ce)UiO-X@TiO2 (X=H, Br, NO2, NH2, N) | 离子交换 | TiCp2Cl2 | DMF | — | 100 ℃, 3 h | — | [ |
PCN-224 | 离子交换 | TiCp2Cl2 | DMF | x=38.6% | 120 ℃, 192 h | — | [ |
UiO-66(Zr) | 离子交换 | TiCp2Cl2 | DMF | x≤60% | 120 ℃, 8 h, microwave | 965.8 | [ |
MOF-5(Zn) | 离子交换 | TiCl3(THF)3 | DMF | x=2% | room temperature, 7 d, stir | about 650 | [ |
MIL-100(Sc) | 离子交换 | TiCl3(THF)3 | DMF | x=88.0% | 120 ℃, 24 h, N2, | — | [ |
PCN-333(Sc) | 离子交换 | TiCl3(THF)3 | DMF | x=48.8% | 120 ℃, 24 h, N2 | — | [ |
MOF-74(Zn) | 离子交换 | TiCl3(THF)3 | DMF | x=94.7% | 120 ℃, 24 h, N2 | — | [ |
MOF-74(Mg) | 离子交换 | TiCl3(THF)3 | DMF | x=37.9% | 120 ℃, 24 h, N2, | — | [ |
NU-1200(Zr) | 离子插入 | Ti(OiPr)4 | CH2Cl2 | x=25% | 60 ℃, 24 h | — | [ |
NU-1000(Zr) | 离子插入 | Ti(OiPr)4 | Heptane | w=5.16% | overnight, N2 | 1930 | [ |
NU-1008(Zr) | 离子插入 | Ti(OiPr)4 | Isopropanol | x=27.3% | 80 ℃, 40 h | — | [ |
UiO-66(Zr) | 离子插入 | TiCl4(THF)2 | DMF | X=21.3%~22.3% | 90 ℃, 120 h | 1200 | [ |
2D UiO-67(Hf)-NS | 离子插入 | TiCl4(THF)2 | DMF | x=14.58% | 120 ℃, 120 h | — | [ |
H-UiO-66(Zr) | 离子交换 | TiCp2Cl2 | DMF | x=3.83% | 85 ℃, 120 h | 1220 | [ |
H-UiO-66(Zr/Ti) | 离子插入 | TiCp2Cl2 TiO(acac)2 TiO(Bu)4 Ti-Citrate | MeOH; H2O | x=6.42% x=7.14% x=14.47% x=4.93% | 65 ℃, 12 h, backflow | 1031 1092 1588 859 | [ |
IRMOF-3 | 配体修饰 | Ti(OiPr)4 | CHCl3 | w=4.3% | 25 ℃, 24 h, N2 | 870 | [ |
MIL-47-NH2 | 配体修饰 | TiO(acac)2 | Toluene | — | 90 ℃, 40 h, Ar, stir | — | [ |
UiO-67-bpydc-MoO2Cl2 | 配体修饰和离子交换 | TiCl4(THF)2 | DMF | x=1.15% | 120 ℃, 144 h | — | [ |
UiO-66(Zr)-NH2 | 离子交换 | TiCl4(THF)2 | DMF | x=57% | 120 ℃, 384 h | 787 | [ |
MOF-525(Zr) | 离子交换 | TiCl4(THF)2 | DMF | x=90% | 85 ℃, 120 h | 2780 | [ |
UiO-67(Zr)-Ru | 离子交换 | TiCl4(THF)2 | DMF | x=54.5% | 120 ℃, 18 h | 1694 | [ |
UiO-66(Zr)-NH2 | 离子交换 | TiCl4(THF)2 | DMF | x=10.4% | 120 ℃, 96 h | 770 | [ |
UiO-66(Zr)-NO2 | 离子交换 | TiCl4(THF)2 | DMF | x=10.4% | 120 ℃, 96 h | 590 | [ |
[80] |
Navarro Amador, R.; Carboni, M.; Meyer, D. RSC Adv. 2017, 7, 195.
doi: 10.1039/C6RA26552A |
[81] |
Feng, Y.; Chen, Q.; Cao, M. J.; Ling, N.; Yao, J. F. ACS Appl. Nano Mater. 2019, 2, 5973.
doi: 10.1021/acsanm.9b01403 |
[82] |
Liu, T.; Tang, S.; Wei, T.; Chen, M. W.; Xie, Z. J.; Zhang, R. Q.; Liu, Y. J.; Wang, N. Cell Rep. Phys. Sci. 2022, 3, 100892.
|
[83] |
Santiago Portillo, A.; Baldoví, H. G.; García Fernandez, M. T.; Navalón, S.; Atienzar, P.; Ferrer, B.; Alvaro, M.; Garcia, H.; Li, Z. J. Phys. Chem. C 2017, 121, 7015.
doi: 10.1021/acs.jpcc.6b13068 |
[84] |
Bahmani, M.; Mowla, D.; Esmaeilzadeh, F.; Ghaedi, M. J. Solid State Chem. 2020, 286, 121304.
doi: 10.1016/j.jssc.2020.121304 |
[85] |
Bahmani, M.; Dashtian, K.; Mowla, D.; Esmaeilzadeh, F.; Ghaedi, M. Chemosphere 2021, 267, 129206.
doi: 10.1016/j.chemosphere.2020.129206 |
[86] |
Smith, S. J. D.; Ladewig, B. P.; Hill, A. J.; Lau, C. H.; Hill, M. R. Sci. Rep. 2015, 5, 7823.
doi: 10.1038/srep07823 |
[87] |
Smith, S. J. D.; Lau, C. H.; Mardel, J. I.; Kitchin, M.; Konstas, K.; Ladewig, B. P.; Hill, M. R. J. Mater. Chem. A 2016, 4, 10627.
doi: 10.1039/C6TA02603F |
[88] |
Avci, G.; Altintas, C.; Keskin, S. J. Phys. Chem. C 2021, 125, 17311.
doi: 10.1021/acs.jpcc.1c03630 |
[89] |
Xu, T. T.; Sheng, F. M.; Wu, B.; Shehzad, M. A.; Yasmin, A.; Wang, X. X.; He, Y.; Ge, L.; Zheng, X. S.; Xu, T. W. J. Membrane Sci. 2020, 615, 118608.
doi: 10.1016/j.memsci.2020.118608 |
[90] |
Ye, G.; Qi, H.; Li, X. L.; Leng, K. Y.; Sun, Y. Y.; Xu, W. ChemPhysChem 2017, 18, 1903.
doi: 10.1002/cphc.v18.14 |
[91] |
Piscopo, C. G.; Voellinger, L.; Schwarzer, M.; Polyzoidis, A.; Bošković, D.; Loebbecke, S. ChemistrySelect 2019, 4, 2806.
doi: 10.1002/slct.201900342 |
[92] |
Nguyen, H. G. T.; Schweitzer, N. M.; Chang, C. Y.; Drake, T. L.; So, M. C.; Stair, P. C.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. ACS Catal. 2014, 4, 2496.
doi: 10.1021/cs5001448 |
[93] |
Santiago-Portillo, A.; Navalón, S.; Álvaro, M.; García, H. J. Catal. 2018, 365, 450.
doi: 10.1016/j.jcat.2018.07.032 |
[94] |
Ye, J. Y.; Gagliardi, L.; Cramer, C. J.; Truhlar, D. G. J. Catal. 2018, 360, 160.
doi: 10.1016/j.jcat.2017.12.007 |
[95] |
Qin, M. H.; Shi, Y. M.; Lu, D. K.; Deng, J. J.; Shi, G. Y.; Zhou, T. S. Appl. Surf. Sci. 2022, 595, 153494.
doi: 10.1016/j.apsusc.2022.153494 |
[96] |
Liu, Q. J.; Sun, N. R.; Gao, M. X.; Deng, C. H. ACS Sustainable Chem. Eng. 2018, 6, 4382.
doi: 10.1021/acssuschemeng.8b00023 |
[1] |
Li, X. F.; Yan, B. Y.; Huang, W. Q.; Fu, L. P.; Sun, X. H.; Lǚ, A. H. Acta Chim. Sinica 2021, 79, 459. (in Chinese)
doi: 10.6023/A20100494 |
(李旭飞, 闫保有, 黄维秋, 浮历沛, 孙宪航, 吕爱华, 化学学报, 2021, 79, 459.)
doi: 10.6023/A20100494 |
|
[2] |
Liu, X. L.; Xiao, Y.; Zhang, Z. Y.; You, Z. F.; Li, J. L.; Ma, D. X.; Li, B. Y. Chin. J. Chem. 2021, 39, 3462.
doi: 10.1002/cjoc.v39.12 |
[3] |
Yan, X.; Qu, H. M.; Chang, Y.; Duan, X. X. Acta Chim. Sinica 2022, 80, 1183. (in Chinese)
doi: 10.6023/A22030134 |
(闫续, 屈贺幂, 常烨, 段学欣, 化学学报, 2022, 80, 1183.)
doi: 10.6023/A22030134 |
|
[4] |
Deng, H. L.; Luo, X. S.; Li, Z. H.; Zhao, J. Y.; Huang, M. H. Chin. J. Org. Chem. 2021, 41, 624. (in Chinese)
doi: 10.6023/cjoc202005070 |
(邓汉林, 罗贤生, 李志华, 赵江颖, 黄木华, 有机化学, 2021, 41, 624.)
doi: 10.6023/cjoc202005070 |
|
[5] |
Mo, G. L.; Wang, Q.; Lu, W. Y.; Wang, C.; Li, P. Chin. J. Chem. 2022, 41, 335.
doi: 10.1002/cjoc.v41.3 |
[6] |
Huang, H. L.; Sun, Y. X.; Jia, X. M.; Xue, W. J.; Geng, C. X.; Zhao, X.; Mei, D. H.; Zhong, C. L. Chin. J. Chem. 2022, 39, 1538.
doi: 10.1002/cjoc.v39.6 |
[7] |
Dou, J.; Chen, Q. Chin. J. Chem. 2023, 41, 695.
doi: 10.1002/cjoc.v41.6 |
[8] |
Qi, Y.; Ren, S. S.; Che, Y.; Yen, J. W.; Ning, G. L. Acta Chim. Sinica 2020, 78, 613. (in Chinese)
doi: 10.6023/A20040126 |
(齐野, 任双颂, 车颖, 叶俊伟, 宁桂玲, 化学学报, 2020, 78, 613.)
doi: 10.6023/A20040126 |
|
[9] |
Assi, H.; Mouchaham, G.; Steunou, N.; Devic, T.; Serre, C. Chem. Soc. Rev. 2017, 46, 3431.
doi: 10.1039/C7CS00001D |
[10] |
Li, L.; Wang, X. S.; Liu, T. F.; Ye, J. H. Small Methods 2020, 4, 2000486.
doi: 10.1002/smtd.v4.12 |
[11] |
Yan, Y.; Li, C. Q.; Wu, Y. H.; Gao, J. K.; Zhang, Q. C. J. Mater. Chem. A 2020, 8, 15245.
doi: 10.1039/D0TA03749D |
[12] |
Zhu, J. J.; Li, P. Z.; Guo, W. H.; Zhao, Y. L.; Zou, R. Q. Coordin. Chem. Rev. 2018, 359, 80.
doi: 10.1016/j.ccr.2017.12.013 |
[13] |
Serre, C.; Ferey, G. Inorg. Chem. 1999, 38, 5370.
doi: 10.1021/ic990345m |
[14] |
Serre, C.; Groves, J. A.; Lightfoot, P.; Slawin, A. M. Z.; Wright, P. A.; Stock, N.; Bein, T.; Haouas, M.; Taulelle, F.; Ferry, G. Chem. Mater. 2006, 18, 1451.
doi: 10.1021/cm052149l |
[15] |
Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Ferey, G. J. Am. Chem. Soc. 2009, 131, 10857.
doi: 10.1021/ja903726m |
[16] |
Gao, J. K.; Miao, J. W.; Li, P. Z.; Teng, W. Y.; Yang, L.; Zhao, Y. L.; Liu, B.; Zhang, Q. C. Chem. Commun. 2014, 50, 3786.
doi: 10.1039/C3CC49440C |
[17] |
Yuan, S.; Liu, T. F.; Feng, D. W.; Tian, J.; Wang, K. C.; Qin, J. S.; Zhang, Q.; Chen, Y. P.; Bosch, M.; Zou, L. F; Teat, S. J.; Dalgarno, S. J.; Zhou, H. C. Chem. Sci. 2015, 6, 3926.
doi: 10.1039/C5SC00916B |
[18] |
Wang, S. J; Kitao, T.; Guillou, N.; Wahiduzzaman, M.; Martineau Corcos, C.; Nouar, F.; Tissot, A.; Binet, L.; Ramsahye, N.; Devautour-Vinot, S.; Kitagawa, S.; Seki, S.; Tsutsui, Y.; Briois, V.; Steunou, N.; Maurin, G.; Uemura, T.; Serre, C. Nat. Commun. 2018, 9, 1660.
doi: 10.1038/s41467-018-04034-w |
[19] |
Keum, Y.; Park, S.; Chen, Y. P.; Park, J. Angew. Chem., nt. Ed. 2018, 57, 14852.
|
[20] |
Castells-Gil, J.;
doi: 10.1039/c8sc05218b pmid: 31057758 |
[21] |
Li, C. Q.; Xu, H.; Gao, J. K; Du, W. N.; Shangguan, L. Q.; Zhang, X.; Lin, R. B.; Wu, H.; Zhou, W.; Liu, X. F.; Yao, J. M.; Chen, B. L. J. Mater. Chem. A 2019, 7, 11928.
doi: 10.1039/C9TA01942A |
[22] |
Wang, S. J.; Reinsch, H.; Heymans, N.; Wahiduzzaman, M.; Martineau-Corcos, C.; De Weireld, G.; Maurin, G.; Serre, C. Matter 2020, 2, 440.
doi: 10.1016/j.matt.2019.11.002 |
[23] |
Li, H. Z.; Pan, Y.; Li, Q. H.; Lin, Q. P.; Lin, D. Y.; Wang, F.; Xu, G.; Zhang, J. J. Mater. Chem. A 2023, 11, 965.
doi: 10.1039/D2TA08921A |
[24] |
Sun, Y. Y.; Gao, M. Y.; Sun, Y. X.; Lu, D. F.; Wang, F.; Zhang, J. Inorg. Chem. 2021, 60, 13955.
doi: 10.1021/acs.inorgchem.1c02179 |
[25] |
Sun, Y. Y.; Lu, D. F.; Sun, Y. X.; Gao, M. Y.; Zheng, N.; Gu, C.; Wang, F.; Zhang, J. ACS Mater. Lett. 2020, 3, 64.
|
[26] |
Salcedo-Abraira, P.; Babaryk, A. A.; Montero-Lanzuela, E.; Contreras-Almengor, O. R.; Cabrero-Antonino, M.; Grape, E. S.; Willhammar, T.; Navalon, S.; Elkaim, E.; Garcia, H.; Horcajada, P. Adv. Mater. 2021, 33, 2106627.
doi: 10.1002/adma.v33.52 |
[27] |
Yan, Y.; Li, C. Q; Wu, Y. H.; Gao, J. K.; Zhang, Q. C. J. Mater. Chem. A 2020, 8, 15245.
doi: 10.1039/D0TA03749D |
[28] |
Zhang, L.; Fan, X.; Yi, X.; Lin, X.; Zhang, J. Acc. Chem. Res. 2022, 55, 3150.
doi: 10.1021/acs.accounts.2c00421 |
[29] |
Mason, J. A.; Darago, L. E.; Lukens, W. W. Jr.; Long, J. R. Inorg. Chem. 2015, 54, 10096.
doi: 10.1021/acs.inorgchem.5b02046 |
[30] |
Nguyen, N. T.; Furukawa, H.; Gandara, F.; Trickett, C. A.; Jeong, H. M.; Cordova, K. E.; Yaghi, O. M. J. Am. Chem. Soc. 2015, 137, 15394.
doi: 10.1021/jacs.5b10999 pmid: 26595681 |
[31] |
Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Chem.-Eur. J. 2011, 17, 6643.
doi: 10.1002/chem.v17.24 |
[32] |
Lan, G. X.; Ni, K. Y.; Veroneau, S. S.; Feng, X. Y.; Nash, G. T.; Luo, T. K.; Xu, Z. W.; Lin, W. B. J. Am. Chem. Soc. 2019, 141, 4204.
doi: 10.1021/jacs.8b13804 |
[33] |
Bueken, B.; Vermoortele, F.; Vanpoucke, D. E.; Reinsch, H.; Tsou, C. C.; Valvekens, P.; De Baerdemaeker, T.; Ameloot, R.; Kirschhock, C. E.; Van Speybroeck, V.; Mayer, J. M.; De Vos, D. Angew. Chem., nt. Ed. 2015, 54, 13912.
|
[34] |
Smolders, S.; Willhammar, T.; Krajnc, A.; Sentosun, K.; Wharmby, M. T.; Lomachenko, K. A.; Bals, S.; Mali, G.; Roeffaers, M. B. J.; De Vos, D. E.; Bueken, B. Angew. Chem., nt. Ed. 2019, 58, 9160.
|
[35] |
Padial, N. M.; Castells-Gil, J.; Almora-Barrios, N.; Romero-Angel, M.; da Silva, I.; Barawi, M.; Garcia-Sanchez, A.; de la Pena O'Shea, V. A.; Marti-Gastaldo, C. J. Am. Chem. Soc. 2019, 141, 13124.
doi: 10.1021/jacs.9b04915 |
[36] |
Nguyen, H. L.; Gándara, F.; Furukawa, H.; Doan, T. L. H.; Cordova, K. E.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 4330.
doi: 10.1021/jacs.6b01233 pmid: 26998612 |
[37] |
Nguyen, H. L.; Vu, T. T.; Le, D.; Doan, T. L. H.; Nguyen, V. Q.; Phan, N. T. S. ACS Catal. 2016, 7, 338.
doi: 10.1021/acscatal.6b02642 |
[38] |
Chang, J. N.; Li, Q.; Yan, Y.; Shi, J. W.; Zhou, J.; Lu, M.; Zhang, M.; Ding, H. M.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Angew. Chem., nt. Ed. 2022, 61, e202209289.
|
[39] |
Zhou, J.; Li, J.; Kan, L.; Zhang, L.; Huang, Q.; Yan, Y.; Chen, Y. F.; Liu, J.; Li, S. L.; Lan, Y. Q. Nat. Commun. 2022, 13, 4681.
doi: 10.1038/s41467-022-32449-z pmid: 35948601 |
[40] |
Cohen, S. M. Chem. Rev. 2012, 112, 970.
doi: 10.1021/cr200179u pmid: 21916418 |
[41] |
Mi, L. W.; Hou, H. W.; Song, Z. Y.; Han, H. Y.; Xu, H.; Fan, Y. T.; Ng, S. W. Cryst. Growth Des. 2007, 7, 2553.
doi: 10.1021/cg070468e |
[42] |
Xu, M. M.; Chen, Q.; Xie, L. H.; Li, J. R. Coordin. Chem. Rev. 2020, 421, 213421.
doi: 10.1016/j.ccr.2020.213421 |
[43] |
Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M. J. Am. Chem. Soc. 2012, 134, 18082.
doi: 10.1021/ja3079219 |
[44] |
Lau, C. H.; Babarao, R.; Hill, M. R. Chem. Commun. 2013, 49, 3634.
doi: 10.1039/c3cc40470f |
[45] |
Yasin, A. S.; Li, J. T.; Wu, N. Q.; Musho, T. Phys. Chem. Chem. Phys. 2016, 18, 12748.
doi: 10.1039/C5CP08070C |
[46] |
Pratik, S. M.; Cramer, C. J. J. Phys. Chem. C 2019, 123, 19778.
doi: 10.1021/acs.jpcc.9b05693 |
[47] |
Melillo, A.; Cabrero-Antonino, M.; Navalón, S.; Álvaro, M.; Ferrer, B.; García, H. Appl. Catal. B: Environ. 2020, 278, 119345.
doi: 10.1016/j.apcatb.2020.119345 |
[48] |
Lee, Y.; Kim, S.; Kang, J. K.; Cohen, S. M. Chem. Commun. 2015, 51, 5735.
doi: 10.1039/C5CC00686D |
[49] |
Rasero-Almansa, A. M.; Iglesias, M.; Sánchez, F. RSC Adv. 2016, 6, 106790.
doi: 10.1039/C6RA23143H |
[50] |
Wu, X. P.; Gagliardi, L.; Truhlar, D. G. J. Am. Chem. Soc. 2018, 140, 7904.
doi: 10.1021/jacs.8b03613 |
[51] |
Zhang, Y. J.; Chen, H. J.; Pan, Y.; Zeng, X. L.; Jiang, X. F.; Long, Z.; Hou, X. D. Chem. Commun. 2019, 55, 13959.
doi: 10.1039/C9CC06562H |
[52] |
Parnicka, P.; Lisowski, W.; Klimczuk, T.; Mikolajczyk, A.; Zaleska-Medynska, A. Appl. Catal. B: Environ. 2022, 310, 121349.
doi: 10.1016/j.apcatb.2022.121349 |
[53] |
He, J. H.; Zhang, Y. J.; He, J.; Zeng, X. L.; Hou, X. D.; Long, Z. Chem. Commun. 2018, 54, 8610.
doi: 10.1039/C8CC04891F |
[54] |
Chen, M.; Long, Z.; Dong, R. H.; Wang, L.; Zhang, J. J.; Li, S. X.; Zhao, X. H.; Hou, X. D.; Shao, H. W.; Jiang, X. Y. Small 2020, 16, 1906240.
doi: 10.1002/smll.v16.7 |
[55] |
Tu, J. P.; Zeng, X. L.; Xu, F. J.; Wu, X.; Tian, Y. F.; Hou, X. D.; Long, Z. Chem. Commun. 2017, 53, 3361.
doi: 10.1039/C7CC00076F |
[56] |
Zhou, Y.; Liu, J. J.; Long, J. L. J. Solid State Chem. 2021, 303, 122510.
doi: 10.1016/j.jssc.2021.122510 |
[57] |
Brozek, C. K.; Dinca, M. J. Am. Chem. Soc. 2013, 135, 12886.
doi: 10.1021/ja4064475 pmid: 23902330 |
[58] |
Zou, L. F.; Feng, D. W.; Liu, T. F.; Chen, Y. P.; Yuan, S.; Wang, K. C.; Wang, X.; Fordham, S.; Zhou, H. C. Chem. Sci. 2016, 7, 1063.
doi: 10.1039/C5SC03620H |
[59] |
Liu, T. F.; Vermeulen, N. A.; Howarth, A. J.; Li, P.; Sarjeant, A. A.; Hupp, J. T.; Farha, O. K. Eur. J. Inorg. Chem. 2016, 2016, 4349.
doi: 10.1002/ejic.v2016.27 |
[60] |
Li, Z. Y.; Peters, A. W.; Platero-Prats, A. E.; Liu, J.; Kung, C. W.; Noh, H.; DeStefano, M. R.; Schweitzer, N. M.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2017, 139, 15251.
doi: 10.1021/jacs.7b09365 |
[61] |
Wang, X. J.; Ma, K. K.; Goh, T.; Mian, M. R.; Xie, H. M.; Mao, H.; Duan, J.; Kirlikovali, K. O.; Stone, A.; Ray, D.; Wasielewski, M. R.; Gagliardi, L.; Farha, O. K. J. Am. Chem. Soc. 2022, 144, 12192.
doi: 10.1021/jacs.2c03060 |
[62] |
Katz, M. J.; Brown, Z. J.; Colon, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Chem. Commun. 2013, 49, 9449.
doi: 10.1039/c3cc46105j |
[63] |
Nguyen, H. G. T.; Mao, L.; Peters, A. W.; Audu, C. O.; Brown, Z. J.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Catal. Sci. Technol. 2015, 5, 4444.
doi: 10.1039/C5CY00825E |
[64] |
Wang, J.; Zhang, J.; Peh, S. B.; Zhai, L. Z.; Ying, Y. P.; Liu, G. L.; Cheng, Y. D.; Zhao, D. ACS Appl. Energy Mater. 2018, 2, 298.
doi: 10.1021/acsaem.8b01303 |
[65] |
Jia, B. Y; Wu, M. J.; Zhang, H.; Zeng, Y.; Wang, G. Y. New J. Chem. 2019, 43, 16981.
doi: 10.1039/C9NJ04241E |
[66] |
Wu, C. D.; Hu, A.; Zhang, L.; Lin, W. B. J. Am. Chem. Soc. 2005, 127, 8940.
doi: 10.1021/ja052431t |
[67] |
Ma, L. Q.; Falkowski, J. M.; Abney, C.; Lin, W. B. Nat. Chem. 2010, 2, 838.
doi: 10.1038/nchem.738 |
[68] |
Kim, J.; Kim, D. O.; Kim, D. W.; Park, J.; Jung, M. S. Inorg. Chim. Acta 2012, 390, 22.
doi: 10.1016/j.ica.2012.04.020 |
[69] |
Kim, J.; McNamara, N. D.; Her, T. H.; Hicks, J. C. ACS Appl. Mater. Interface 2013, 5, 11479.
doi: 10.1021/am404089v |
[70] |
Kim, J.; Neumann, G. T.; McNamara, N. D.; Hicks, J. C. J. Mater. Chem. A 2014, 2, 14014.
doi: 10.1039/C4TA03050H |
[71] |
Leus, K.; Vanhaelewyn, G.; Bogaerts, T.; Liu, Y. Y.; Esquivel, D.; Callens, F.; Marin, G. B.; Van Speybroeck, V.; Vrielinck, H.; Van Der Voort, P. Catal. Today 2013, 208, 97.
doi: 10.1016/j.cattod.2012.09.037 |
[72] |
Kim, J.; Ok Kim, D.; Wook Kim, D.; Sagong, K. J. Solid State Chem. 2015, 230, 110.
doi: 10.1016/j.jssc.2015.06.034 |
[73] |
Huang, Z. Y.; Liu, D.; Camacho-Bunquin, J.; Zhang, G. H.; Yang, D. L.; López-Encarnación, J. M.; Xu, Y. J.; Ferrandon, M. S.; Niklas, J.; Poluektov, O. G.; Jellinek, J.; Lei, A.; Bunel, E. E.; Delferro, M. Organometallics 2017, 36, 3921.
doi: 10.1021/acs.organomet.7b00544 |
[74] |
Bravo-Sanabria, C. A.; Solano-Delgado, L. C.; Ospina-Ospina, R.; Martínez-Ortega, F.; Ramírez-Caballero, G. E. Microporous Mesoporous Mater. 2020, 305, 110359.
doi: 10.1016/j.micromeso.2020.110359 |
[75] |
Sun, D.; Liu, W. J.; Qiu, M.; Zhang, Y. F.; Li, Z. H. Chem. Commun. 2015, 51, 2056.
doi: 10.1039/C4CC09407G |
[76] |
Zeama, M.; Morsy, M.; Abdel-Azeim, S.; Abdelnaby, M.; Alloush, A.; Yamani, Z. Inorg. Chim. Acta 2020, 501, 119287.
doi: 10.1016/j.ica.2019.119287 |
[77] |
Gao, W. Y.; Ngo, H. T.; Niu, Z.; Zhang, W. J.; Pan, Y. X.; Yang, Z. Y.; Bhethanabotla, V. R.; Joseph, B.; Aguila, B.; Ma, S. ChemSusChem 2020, 13, 6273.
|
[78] |
Shi, L. T.; Wu, C. C.; Wang, Y.; Dou, Y. H.; Yuan, D.; Li, H.; Huang, H. W.; Zhang, Y.; Gates, I. D.; Sun, X. D.; Ma, T. Y. Adv. Funct. Mater. 2022, 32, 2202571.
doi: 10.1002/adfm.v32.30 |
[79] |
Wang, A.; Zhou, Y. J.; Wang, Z. L.; Chen, M.; Sun, L. Y.; Liu, X. RSC Adv. 2016, 6, 3671.
doi: 10.1039/C5RA24135A |
[1] | Jian Kang, Zixuan Shi, Jingmei Li. Preparation of Highly Antimicrobial Composites and Study of Photocatalytic Antimicrobial Properties Driven by LED Light [J]. Acta Chimica Sinica, 2024, 82(9): 962-970. |
[2] | Kangkui Li, Xianyang Long, Yue Huang, Shifa Zhu. Recent Advances in Visible Light Induced Radical 1,2-Functionalization of Alkynes [J]. Acta Chimica Sinica, 2024, 82(6): 658-676. |
[3] | Zhucheng Wang, Lei Liu, Mengyuan Zhu, Yue Sun, Qing Zhao, Yuyin Ding, Jixin Lu, Cunguo Wang, Qi Li, Aihua He, Fuchen Ye. Studies on the Properties of 1,5-Diaminoanthraquinone (AAQ) Composite Used as New Positive Electrode Material in Lithium Ion Batteries [J]. Acta Chimica Sinica, 2024, 82(6): 589-595. |
[4] | Guangzheng Huang, Kunwei Li, Yannan Luo, Qiang Zhang, Yuanlong Pan, Honglin Gao. Hydrothermal Treatment for Constructing K Doping and Surface Defects in g-C3N4 Nanosheets Promote Photocatalytic Hydrogen Production [J]. Acta Chimica Sinica, 2024, 82(3): 314-322. |
[5] | Qiang Zhang, Huan Wang, Shuai Wang, Yuanyuan Wang, Mei Zhang, Hua Song. Preparation of NiCe(x)/FLRC-TiO2 Catalyst and Its Performance in Hydrodeoxygenation [J]. Acta Chimica Sinica, 2024, 82(3): 287-294. |
[6] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines [J]. Acta Chimica Sinica, 2024, 82(2): 190-212. |
[7] | Yuhan Wu, Dongdong Zhang, Hongyu Yin, Zhengnan Chen, Wen Zhao, Yuhua Chi. Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target [J]. Acta Chimica Sinica, 2023, 81(9): 1148-1156. |
[8] | Jiawen Liu, Weihuang Lin, Weijia Wang, Xueyi Guo, Ying Yang. Synthesis and Photocatalytic Degradation of Cu1.94S-SnS Nano-heterojunction [J]. Acta Chimica Sinica, 2023, 81(7): 725-734. |
[9] | Minghui He, Ziqiu Ye, Guiqing Lin, Sheng Yin, Xinyi Huang, Xu Zhou, Ying Yin, Bo Gui, Cheng Wang. Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis★ [J]. Acta Chimica Sinica, 2023, 81(7): 784-792. |
[10] | Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters [J]. Acta Chimica Sinica, 2023, 81(6): 657-668. |
[11] | Fei Li, Huili Ding, Chaozhong Li. Hydrotrifluoromethylation of Alkenes with a Fluoroform-Derived Trifluoromethylboron Complex [J]. Acta Chimica Sinica, 2023, 81(6): 577-581. |
[12] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Radical-Based Dehydroxylation of Hydroxyl Groups via Oxalates [J]. Acta Chimica Sinica, 2023, 81(11): 1609-1623. |
[13] | Guoqiang Zhang, Jinghao Huo, Xin Wang, Shouwu Guo. P-doped TiO2/C Nanotubes as Anodes for High-performance Li-ion Capacitors [J]. Acta Chimica Sinica, 2023, 81(1): 6-13. |
[14] | Chunhui Yang, Jingchao Chen, Xinhan Li, Li Meng, Kaimin Wang, Weiqing Sun, Baomin Fan. Difluoroallylation of Silanes under Photoirradiation [J]. Acta Chimica Sinica, 2023, 81(1): 1-5. |
[15] | Zhongshu Xie, Zhongxin Xue, Ziwen Xu, Qian Li, Hongyu Wang, Wei-Shi Li. Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production [J]. Acta Chimica Sinica, 2022, 80(9): 1231-1237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||