Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (7): 784-792.DOI: 10.6023/A23040178 Previous Articles Next Articles
Special Issue: 庆祝《化学学报》创刊90周年合辑
Perspective
何明慧, 叶子秋, 林桂庆, 尹晟, 黄心翊, 周旭, 尹颖, 桂波, 汪成*()
投稿日期:
2023-04-28
发布日期:
2023-06-05
作者简介:
何明慧, 硕士毕业于浙江师范大学, 现为武汉大学化学与分子科学学院博士生, 目前研究方向为共价有机框架的构筑及其催化性能的探究. |
汪成, 2003年获武汉大学学士学位, 2008年在中国科学院化学研究所获理学博士学位, 随后在美国西北大学化学系进行博士后研究. 2012年4月加入武汉大学化学与分子科学学院, 任教授、博士生导师. 2013年被聘为湖北省“楚天学者”特聘教授, 2015年获得湖北省杰出青年基金资助, 2019年入选第四批“万人计划”青年拔尖人才, 2022年获国家杰出青年科学基金资助, 任Chinese Journal of Chemistry编委、中国化学会超分子化学专业委员会委员、中国化学会晶体化学专业委员会委员. 主要从事共价有机框架(COFs)的研究. |
基金资助:
Minghui He, Ziqiu Ye, Guiqing Lin, Sheng Yin, Xinyi Huang, Xu Zhou, Ying Yin, Bo Gui, Cheng Wang()
Received:
2023-04-28
Published:
2023-06-05
Contact:
*E-mail: About author:
Supported by:
Share
Minghui He, Ziqiu Ye, Guiqing Lin, Sheng Yin, Xinyi Huang, Xu Zhou, Ying Yin, Bo Gui, Cheng Wang. Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis★[J]. Acta Chimica Sinica, 2023, 81(7): 784-792.
[1] |
Li X. B.; Xin Z. K.; Xia S. G.; Gao X. Y.; Tung C. H.; Wu L. Z. Chem. Soc. Rev. 2020, 49, 9028.
doi: 10.1039/D0CS00930J |
[2] |
(a) Li X. B.; Tung C. H.; Wu L. Z. Nat. Rev. Chem 2018, 2, 160.
doi: 10.1038/s41570-018-0024-8 |
(b) Frischmann P. D.; Mahata K.; Wurthner F. Chem. Soc. Rev. 2013, 42, 1847.
doi: 10.1039/C2CS35223K |
|
[3] |
(a) Du P.; Eisenberg R. Energy Environ. Sci. 2012, 5, 6012.
doi: 10.1039/c2ee03250c |
(b) Guo Q.; Ma Z.; Zhou C.; Ren Z.; Yang X. M. Chem. Rev. 2019, 119, 11020.
doi: 10.1021/acs.chemrev.9b00226 |
|
(c) Li S. H.; Qi M. Y.; Tang Z. R.; Xu Y. J. Chem. Soc. Rev. 2021, 50, 7539.
doi: 10.1039/D1CS00323B |
|
(d) Sulas-Kern D. B.; Miller E. M.; Blackburn J. L. Energy Environ. Sci. 2020, 13, 2684.
doi: 10.1039/D0EE01370F |
|
(e) Cheng Z.; Qi W.; Pang C. H.; Thomas T.; Wu T.; Liu S.; Yang M. Adv. Funct. Mater. 2021, 31, 2100553.
doi: 10.1002/adfm.v31.26 |
|
[4] |
(a) Yuan Y. J.; Yu Z. T.; Chen D. Q.; Zou Z. G. Chem. Soc. Rev. 2017, 46, 603.
doi: 10.1039/C6CS00436A |
(b) Jing X.; He C.; Zhao L.; Duan C. Y. Acc. Chem. Res. 2019, 52, 100.
doi: 10.1021/acs.accounts.8b00463 |
|
(c) Lavarda G.; Labella J.; Martínez-Díaz M. V.; Rodríguez-Morgade M. S.; Osuka A.; Torres T. Chem. Soc. Rev. 2022, 51, 9482.
doi: 10.1039/D2CS00280A |
|
(d) Bai X.; Yan S.; Wang J.; Wang L.; Jiang W.; Wu S.; Sun C.; Zhu Y. F. J. Mater. Chem. A 2014, 2, 17521.
doi: 10.1039/C4TA02781G |
|
(e) Lee J.-S. M.; Cooper A. I. Chem. Rev. 2020, 120, 2171.
doi: 10.1021/acs.chemrev.9b00399 |
|
(f) Schwab M. G.; Hamburger M.; Feng X.; Shu J.; Spiess H. W.; Wang X.; Antonietti M.; Müllen K. Chem. Commun. 2010, 46, 8932.
doi: 10.1039/c0cc04057f |
|
(g) Wang H.; Wang H.; Wang Z.; Tang L.; Zeng G.; Xu P.; Chen M.; Xiong T.; Zhou C.; Li X.; Huang D.; Zhu Y.; Wang Z.; Tang J. W. Chem. Soc. Rev. 2020, 49, 4135.
doi: 10.1039/D0CS00278J |
|
[5] |
(a) Ding S. Y.; Wang W. Chem. Soc. Rev. 2013, 42, 548.
doi: 10.1039/C2CS35072F |
(b) Geng K.; He T.; Liu R.; Dalapati S.; Tan K. T.; Li Z.; Tao S.; Gong Y.; Jiang Q.; Jiang D. L. Chem. Rev. 2020, 120, 8814.
doi: 10.1021/acs.chemrev.9b00550 |
|
(c) Liang R. R.;Jiang, S. Y.; A, R. H.; Zhao, X. Chem. Soc. Rev. 2020, 49, 3920.
doi: 10.1039/D0CS00049C |
|
(d) Lyle S. J.; Waller P. J.; Yaghi O. M. Trends Chem. 2019, 1, 172.
doi: 10.1016/j.trechm.2019.03.001 |
|
(e) Gui B.; Ding H.; Cheng Y.; Mal A.; Wang C. Trends Chem. 2022, 4, 437.
doi: 10.1016/j.trechm.2022.01.002 |
|
[6] |
Guan X.; Chen F.; Fang Q.; Qiu S. Chem. Soc. Rev. 2020, 49, 1357.
doi: 10.1039/C9CS00911F |
[7] |
(a) Jiang L.; Tian Y.; Sun T.; Zhu Y.; Ren H.; Zou X.; Ma Y.; Meihaus K. R.; Long J. R.; Zhu G. S. J. Am. Chem. Soc. 2018, 140, 15724.
doi: 10.1021/jacs.8b08174 |
(b) Khan N. A.; Zhang R.; Wu H.; Shen J.; Yuan J.; Fan C.; Cao L.; Olson M. A.; Jiang Z. J. Am. Chem. Soc. 2020, 142, 13450.
doi: 10.1021/jacs.0c04589 |
|
(c) Zhao S.; Jiang C.; Fan J.; Hong S.; Mei P.; Yao R.; Liu Y.; Zhang S.; Li H.; Zhang H.; Sun C.; Guo Z.; Shao P.; Zhu Y.; Zhang J.; Guo L.; Ma Y.; Zhang J.; Feng X.; Wang F.; Wu H.; Wang B. Nat. Mater. 2021, 20, 1551.
doi: 10.1038/s41563-021-01052-w |
|
(d) Zhang Z.; Kang C.; Peh S. B.; Shi D.; Yang F.; Liu Q.; Zhao D. J. Am. Chem. Soc. 2022, 144, 14992.
doi: 10.1021/jacs.2c05309 |
|
[8] |
(a) Vyas V. S.; Haase F.; Stegbauer L.; Savasci G.; Podjaski F.; Ochsenfeld C.; Lotsch B. V. Nat. Commun. 2015, 6, 8508.
doi: 10.1038/ncomms9508 |
(b) Yang S.; Hu W.; Zhang X.; He P.; Pattengale B.; Liu C.; Cendejas M.; Hermans I.; Zhang X.; Zhang J.; Huang J. J. Am. Chem. Soc. 2018, 140, 14614.
doi: 10.1021/jacs.8b09705 |
|
(c) Zhi Q.; Liu W.; Jiang R.; Zhan X.; Jin Y.; Chen X.; Yang X.; Wang K.; Cao W.; Qi D.; Jiang J. Z. J. Am. Chem. Soc. 2022, 144, 21328.
doi: 10.1021/jacs.2c09482 |
|
(d) Zhao W.; Yan P.; Yang H.; Bahri M.; James A. M.; Chen H.; Liu L.; Li B.; Pang Z.; Clowes R.; Browning N. D.; Ward J. W.; Wu Y.; Cooper A. I. Nat. Synth. 2022, 1, 87.
doi: 10.1038/s44160-021-00005-0 |
|
[9] |
(a) Jhulki S.; Evans A. M.; Hao X.-L.; Cooper M. W.; Feriante C. H.; Leisen J.; Li H.; Lam D.; Hersam M. C.; Barlow S.; Brédas J.-L.; Dichtel W. R.; Marder S. R. J. Am. Chem. Soc. 2020, 142, 783.
doi: 10.1021/jacs.9b08628 |
(b) Meng Z.; Stolz R. M.; Mirica K. A. J. Am. Chem. Soc. 2019, 141, 11929.
doi: 10.1021/jacs.9b03441 |
|
(c) Das G.; Biswal B. P.; Kandambeth S.; Venkatesh V.; Kaur G.; Addicoat M.; Heine T.; Verma S.; Banerjee R. Chem. Sci. 2015, 6, 3931.
doi: 10.1039/C5SC00512D |
|
[10] |
(a) Jin E.; Asada M.; Xu Q.; Dalapati S.; Addicoat M. A.; Brady M. A.; Xu H.; Nakamura T.; Heine T.; Chen Q.; Jiang D. Science 2017, 357, 673.
doi: 10.1126/science.aan0202 |
(b) Ding H.; Li J.; Xie G.; Lin G.; Chen R.; Peng Z.; Yang C.; Wang B.; Sun J.; Wang C. Nat. Commun. 2018, 9, 5234.
doi: 10.1038/s41467-018-07670-4 |
|
(c) Jakowetz A. C.; Hinrichsen T. F.; Ascherl L.; Sick T.; Calik M.; Auras F.; Medina D. D.; Friend R. H.; Rao A.; Bein T. J. Am. Chem. Soc. 2019, 141, 11565.
doi: 10.1021/jacs.9b03956 |
|
(d) Qi M.; Zhou Y.; Lv Y.; Chen W.; Su X.; Zhang T.; Xing G.; Xu G.; Terasaki O.; Chen L. J. Am. Chem. Soc. 2023, 145, 2739.
doi: 10.1021/jacs.2c10717 |
|
[11] |
(a) Zhang Q.; Dong S.; Shao P.; Zhu Y.; Mu Z.; Sheng D.; Zhang T.; Jiang X.; Shao R.; Ren Z.; Xie J.; Feng X.; Wang B. Science 2022, 378, 181.
doi: 10.1126/science.abm6304 |
(b) Li X.; Wang H.; Chen H.; Zheng Q.; Zhang Q.; Mao H.; Liu Y.; Cai S.; Sun B.; Dun C.; Gordon M. P.; Zheng H.; Reimer J. A.; Urban J. J.; Ciston J.; Tan T.; Chan E. M.; Zhang J.; Liu Y. Chem 2020, 6, 933.
doi: 10.1016/j.chempr.2020.01.011 |
|
(c) Yang X.; Hu Y.; Dunlap N.; Wang X.; Huang S.; Su Z.; Sharma S.; Jin Y.; Huang F.; Wang X.; Lee S.-H.; Zhang W. Angew. Chem., Int. Ed. 2020, 59, 20385.
doi: 10.1002/anie.v59.46 |
|
(d) Wu C.; Liu Y.; Liu H.; Duan C.; Pan Q.; Zhu J.; Hu F.; Ma X.; Jiu T.; Li Z.; Zhao Y. J. Am. Chem. Soc. 2018, 140, 10016.
doi: 10.1021/jacs.8b06291 |
|
(e) Peng Z.; Ding H.; Chen R.; Gao C.; Wang C. Acta Chim. Sinica 2019, 77, 681. (in Chinese)
doi: 10.6023/A19040118 |
|
(彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77, 681.)
|
|
[12] |
(a) Du Y. D.; Zhou C. Y.; To W. P.; Wang H. X.; Che C. M. Chem. Sci. 2020, 11, 4680.
doi: 10.1039/D0SC00784F |
(b) Li L. L.; Diau E. W. Chem. Soc. Rev. 2013, 42, 291.
doi: 10.1039/C2CS35257E |
|
(c) Najafpour M. M.; Renger G.; Holynska M.; Moghaddam A. N.; Aro E. M.; Carpentier R.; Nishihara H.; Eaton-Rye J. J.; Shen J. R.; Allakhverdiev S. I. Chem. Rev. 2016, 116, 2886.
doi: 10.1021/acs.chemrev.5b00340 |
|
(d) Zhang W.; Lai W.; Cao R. Chem. Rev. 2017, 117, 3717.
doi: 10.1021/acs.chemrev.6b00299 |
|
[13] |
Urbani M.; Gratzel M.; Nazeeruddin M. K.; Torres T. Chem. Rev. 2014, 114, 12330.
doi: 10.1021/cr5001964 |
[14] |
(a) Drain C. M.; Varotto V.; Radivojevi I. Chem. Rev. 2009, 109, 1631.
|
(b) Gao W. Y.; Chrzanowski M.; Ma S. Chem. Soc. Rev. 2014, 43, 5841.
doi: 10.1039/C4CS00001C |
|
(c) Hasobe T. Phys. Chem. Chem. Phys. 2012, 14, 15975.
doi: 10.1039/c2cp42957h |
|
(d) Jiang Z. W.; Zou Y. C.; Zhao T. T.; Zhen S. J.; Li Y. F.; Huang C. Z. Angew. Chem., Int. Ed. 2020, 59, 3300.
doi: 10.1002/anie.v59.8 |
|
[15] |
(a) Chen R.; Shi J. L.; Ma Y.; Lin G.; Lang X.; Wang C. Angew. Chem., Int. Ed. 2019, 58, 6430.
doi: 10.1002/anie.v58.19 |
(b) Meng Y.; Luo Y.; Shi J. L.; Ding H.; Lang X.; Chen W.; Zheng A.; Sun J.; Wang C. Angew. Chem., Int. Ed. 2020, 59, 3624.
doi: 10.1002/anie.v59.9 |
|
(c) Sun N.; Jin Y.; Wang H.; Yu B.; Wang R.; Wu H.; Zhou W.; Jiang J. Chem. Mater. 2022, 34, 1956.
doi: 10.1021/acs.chemmater.1c04436 |
|
(d) Jin F.; Lin E.; Wang T.; Yan D.; Yang Y.; Chen Y.; Cheng P.; Zhang Z. Chem 2022, 8, 3064.
doi: 10.1016/j.chempr.2022.07.016 |
|
(e) Gong Y. N.; Zhong W.; Li Y.; Qiu Y.; Zheng L.; Jiang J.; Jiang H. L. J. Am. Chem. Soc. 2020, 142, 16723.
doi: 10.1021/jacs.0c07206 |
|
(f) Lu M.; Liu J.; Li Q.; Zhang M.; Liu M.; Wang J. L.; Yuan D. Q.; Lan Y. Q. Angew. Chem., Int. Ed. 2019, 58, 12392.
doi: 10.1002/anie.v58.36 |
|
(g) Xu X.; Cai P.; Chen H.; Zhou H. C.; Huang N. J. Am. Chem. Soc. 2022, 144, 18511.
doi: 10.1021/jacs.2c07733 |
|
(h) Ding J.; Guan X.; Lv J.; Chen X.; Zhang Y.; Li H.; Zhang D.; Qiu S.; Jiang H. L.; Fang Q. J. Am. Chem. Soc. 2023, 145, 3248.
doi: 10.1021/jacs.2c13817 |
|
[16] |
(a) Wu Q. J.; Liang J.; Huang Y. B.; Cao R. Acc. Chem. Res. 2022, 55, 2978.
doi: 10.1021/acs.accounts.2c00326 |
(b) Wang K.; Qi D. D.; Li Y. L.; Wang T. Y.; Liu H. B.; Jiang J. Z. Coord. Chem. Rev. 2019, 378, 188.
doi: 10.1016/j.ccr.2017.08.023 |
|
[17] |
(a) Francis Kurisingal J.; Kim H.; Hyeak Choe J.; Seop Hong C. Coord. Chem. Rev. 2022, 473, 214835.
doi: 10.1016/j.ccr.2022.214835 |
(b) He Z.; Goulas J.; Parker E.; Sun Y.; Zhou X.-D.; Fei L. Catal. Today 2023, 409, 103.
doi: 10.1016/j.cattod.2022.04.021 |
|
[18] |
(a) Wang X.; Ding X.; Wang T.; Wang K.; Jin Y.; Han Y.; Zhang P.; Li N.; Wang H.; Jiang J. ACS Appl. Mater. Interfaces 2022, 14, 41122.
doi: 10.1021/acsami.2c12542 |
(b) Dong M.; Li W.; Zhou J.; You S. Q.; Sun C. Y.; Yao X. H.; Qin C.; Wang X. L.; Su Z. M. Chin. J. Chem. 2022, 40, 2678.
doi: 10.1002/cjoc.v40.22 |
|
(c) Yu X.; Huang W.; Li Y. G. Acta Chim. Sinica 2022, 80, 1494. (in Chinese)
doi: 10.6023/A22070303 |
|
(于潇涵, 黄伟, 李彦光, 化学学报, 2022, 80, 1494.)
|
|
(d) Chen Q.; Kuang Q.; Xie Z. X. Acta Chim. Sinica 2021, 79, 10. (in Chinese)
doi: 10.6023/A20080384 |
|
(陈钱, 匡勤, 谢兆雄, 化学学报, 2021, 79, 10.)
|
|
[19] |
(a) Song D.; Xu W.; Li J.; Zhao J.; Shi Q.; Li F.; Sun X.; Wang N. Chin. J. Catal. 2022, 43, 2425.
doi: 10.1016/S1872-2067(22)64143-3 |
(b) Skorjanc T.; Shetty D.; Mahmoud M. E.; Gandara F.; Martinez J. I.; Mohammed A. K.; Boutros S.; Merhi A.; Shehayeb E. O.; Sharabati C. A.; Damacet P.; Raya J.; Gardonio S.; Hmadeh M.; Kaafarani B. R.; Trabolsi A. ACS Appl. Mater. Interfaces 2022, 14, 2015.
doi: 10.1021/acsami.1c20729 |
|
(c) Gong L. J.; Liu L. Y.; Zhao S. S.; Yang S. L.; Si D. H.; Wu Q. J.; Wu Q.; Huang Y. B.; Cao R. Chem. Eng. J. 2023, 458, 141360.
doi: 10.1016/j.cej.2023.141360 |
|
[20] |
(a) Wang L.; Huang G.; Zhang L.; Lian R.; Huang J.; She H.; Liu C.; Wang Q. J. Energy Chem. 2022, 64, 85.
doi: 10.1016/j.jechem.2021.04.053 |
(b) Zou L.; Sa R.; Zhong H.; Lv H.; Wang X.; Wang R. ACS Catal. 2022, 12, 3550.
doi: 10.1021/acscatal.1c05449 |
|
[21] |
(a) Ye S.; Ding C.; Liu M.; Wang A.; Huang Q.; Li C. Adv. Mater. 2019, 31, 1902069.
doi: 10.1002/adma.v31.50 |
(b) Tao X.; Zhao Y.; Wang S.; Li C.; Li R. Chem. Soc. Rev. 2022, 51, 3561.
doi: 10.1039/D1CS01182K |
|
(c) Qi Y.; Zhang F. Acta Chim. Sinica 2022, 80, 827. (in Chinese)
doi: 10.6023/A21120607 |
|
(祁育, 章福祥, 化学学报, 2022, 80, 827.)
|
|
[22] |
(a) Chen R.; Wang Y.; Ma Y.; Mal A.; Gao X. Y.; Gao L.; Qiao L.; Li X. B.; Wu L. Z.; Wang C. Nat. Commun. 2021, 12, 1354.
doi: 10.1038/s41467-021-21527-3 |
(b) Xu Z.; Cui X.; Li Y.; Li Y.; Si Z.; Duan Q. Appl. Surf. Sci. 2023, 613, 155966.
doi: 10.1016/j.apsusc.2022.155966 |
|
(c) Lv M.; Ren X.; Cao R.; Chang Z.; Chang X.; Bai F.; Li Y. Polymers 2022, 14, 4893.
doi: 10.3390/polym14224893 |
|
[23] |
(a) Wu S.; Zhang Y. F.; Ding H.; Li X.; Lang X. J. Colloid Interface Sci. 2022, 610, 446.
doi: 10.1016/j.jcis.2021.12.024 |
(b) Li P.; Dong X.; Zhang Y.; Lang X.; Wang C. Mater. Today Chem. 2022, 25, 100953.
|
|
(c) Shi J. L.; Chen R.; Hao H.; Wang C.; Lang X. Angew. Chem., Int. Ed. 2020, 59, 908.
|
|
[24] |
(a) Feng K.; Hao H.; Huang F.; Lang X.; Wang C. Mater. Chem. Front. 2021, 5, 2255.
doi: 10.1039/D0QM01076F |
(b) Shan H.; Cai D.; Zhang X.; Zhu Q.; Qin P.; Baeyens J. Chem. Eng. J. 2022, 432, 134288.
doi: 10.1016/j.cej.2021.134288 |
|
(c) Kan X.; Wang J. C.; Chen Z.; Du J. Q.; Kan J. L.; Li W. Y.; Dong Y. B. J. Am. Chem. Soc. 2022, 144, 6681.
doi: 10.1021/jacs.2c01186 |
|
[25] |
Qian Y.; Li D.; Han Y.; Jiang H. L. J. Am. Chem. Soc. 2020, 142, 20763.
doi: 10.1021/jacs.0c09727 |
[26] |
Chen L.; Hang J.; Chen B.; Kang J.; Yan Z.; Wang Z.; Zhang Y.; Chen S.; Wang Y.; Jin Y.; Xia C. Chem. Eng. J. 2023, 454, 140378.
doi: 10.1016/j.cej.2022.140378 |
[1] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines [J]. Acta Chimica Sinica, 2024, 82(2): 190-212. |
[2] | Yuhan Wu, Dongdong Zhang, Hongyu Yin, Zhengnan Chen, Wen Zhao, Yuhua Chi. Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target [J]. Acta Chimica Sinica, 2023, 81(9): 1148-1156. |
[3] | Rongjie Yang, Lin Zhou, Bin Su. Selective Detection of Vitamins A and C based on Covalent Organic Framework Modified Electrodes★ [J]. Acta Chimica Sinica, 2023, 81(8): 920-927. |
[4] | Jianchuan Liu, Cuiyan Li, Yaozu Liu, Yujie Wang, Qianrong Fang. Highly-Stable Two-Dimensional Bicarbazole-based sp2-Carbon-conjugated Covalent Organic Framework for Efficient Electrocatalytic Oxygen Reduction★ [J]. Acta Chimica Sinica, 2023, 81(8): 884-890. |
[5] | Xuefeng Liang, Jian Jing, Xin Feng, Yongze Zhao, Xinyuan Tang, Yan He, Lisheng Zhang, Huifang Li. Electronic Structure of Covalent Organic Frameworks COF66 and COF366: from Monomers to Two-Dimensional Framework [J]. Acta Chimica Sinica, 2023, 81(7): 717-724. |
[6] | Jiawen Liu, Weihuang Lin, Weijia Wang, Xueyi Guo, Ying Yang. Synthesis and Photocatalytic Degradation of Cu1.94S-SnS Nano-heterojunction [J]. Acta Chimica Sinica, 2023, 81(7): 725-734. |
[7] | Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters [J]. Acta Chimica Sinica, 2023, 81(6): 657-668. |
[8] | Fei Li, Huili Ding, Chaozhong Li. Hydrotrifluoromethylation of Alkenes with a Fluoroform-Derived Trifluoromethylboron Complex [J]. Acta Chimica Sinica, 2023, 81(6): 577-581. |
[9] | Qi Xueping, Wang Fei, Zhang Jian. A Post-Synthetic Method for the Construction of Titanium-Based Metal Organic Frameworks and Their Applications [J]. Acta Chimica Sinica, 2023, 81(5): 548-558. |
[10] | Wanhong Li, Mingyue Yu, Lili Wang, Dehuang Zhu, Suhong Peng, Hui Wang, Haiyang Liu. Sovlent Influence on the Femtosecond Transient Absorption Spectra of Tetraphenylporphyrin Manganese(III) Chloride [J]. Acta Chimica Sinica, 2023, 81(4): 345-350. |
[11] | Junchang Chen, Mingxing Zhang, Shuao Wang. Research Progress of Synthesis Methods for Crystalline Porous Materials [J]. Acta Chimica Sinica, 2023, 81(2): 146-157. |
[12] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Radical-Based Dehydroxylation of Hydroxyl Groups via Oxalates [J]. Acta Chimica Sinica, 2023, 81(11): 1609-1623. |
[13] | Chunhui Yang, Jingchao Chen, Xinhan Li, Li Meng, Kaimin Wang, Weiqing Sun, Baomin Fan. Difluoroallylation of Silanes under Photoirradiation [J]. Acta Chimica Sinica, 2023, 81(1): 1-5. |
[14] | Zhongshu Xie, Zhongxin Xue, Ziwen Xu, Qian Li, Hongyu Wang, Wei-Shi Li. Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production [J]. Acta Chimica Sinica, 2022, 80(9): 1231-1237. |
[15] | Yuguang Sui, Jinrong Zhou, Pan Liao, Wenjie Liang, Hai Xu. A Gaint Donor-Acceptor Molecular Switch Compound: Synthesis and Properties [J]. Acta Chimica Sinica, 2022, 80(8): 1061-1065. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||