Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (7): 793-808.DOI: 10.6023/A23040192 Previous Articles Next Articles
Special Issue: 庆祝《化学学报》创刊90周年合辑
Review
杨爽a, 王宁宜a, 杭青青a, 张宇辰a,*(), 石枫a,b,*()
投稿日期:
2023-04-30
发布日期:
2023-06-15
作者简介:
杨爽, 1999年出生于江苏宿迁, 2021年在徐州工程学院获得学士学位, 2021年至今在江苏师范大学化学与材料科学学院攻读硕士学位(导师: 石枫教授、张宇辰副教授). 研究领域是手性含氧杂环骨架的催化不对称构建. |
王宁宜, 1998年出生于湖南宁远, 2020年在黑龙江科技大学获得学士学位, 2022年至今在江苏师范大学化学与材料科学学院攻读硕士学位(导师: 石枫教授、张宇辰副教授). 研究领域是轴手性杂环化合物的高对映选择性合成. |
杭青青, 1995年出生于江苏泰州, 2018年在盐城师范学院获得学士学位, 2021年在江苏师范大学化学与材料科学学院获得硕士学位(导师: 石枫教授、张宇辰副教授). 研究领域是基于手性磷酸催化的不对称环加成反应构建手性杂环骨架. |
张宇辰, 1989年出生, 江苏师范大学化学与材料科学学院副教授, 硕士生导师. 2019年毕业于中国科学技术大学有机化学专业, 获理学博士学位(导师: 龚流柱教授), 2019年入职江苏师范大学化学与材料科学学院. 主要从事手性生物活性分子的设计、催化不对称合成以及生物活性筛选等方面的研究工作. |
石枫, 1976年出生, 理学博士, 江苏师范大学化学与材料科学学院教授, 常州大学石油化工学院特聘教授, 博士生导师, 国家杰出青年基金获得者. 2010年至2013年攻读了苏州大学与中国科学技术大学联合培养的博士学位, 2012年至2013年赴新加坡南洋理工大学从事访问学者工作. 主要从事催化不对称合成手性杂环的研究, 聚焦手性吲哚化学这一研究领域, 为构建结构复杂多样的手性杂环骨架提供了高效、高选择性的方法. |
基金资助:
Shuang Yanga, Ningyi Wanga, Qingqing Hanga, Yuchen Zhanga(), Feng Shia,b()
Received:
2023-04-30
Published:
2023-06-15
Contact:
*E-mail: About author:
Supported by:
Share
Shuang Yang, Ningyi Wang, Qingqing Hang, Yuchen Zhang, Feng Shi. Advances in Catalytic Asymmetric Reactions Involving o-Hydroxyphenyl Substituted p-Quinone Methides★[J]. Acta Chimica Sinica, 2023, 81(7): 793-808.
[1] |
For some examples: (a) Nonaka G.; Kawahara O.; Nishioka I.. Chem. Pharm. Bull. 1982, 30, 4277.
doi: 10.1248/cpb.30.4277 |
(b) Sawadjoon S.; Kittakoop P.; Kirtikara K.; Vichai V.; Tanticharoen M.; Thebtaranonth Y. J. Org. Chem. 2002, 67, 5470.
doi: 10.1021/jo020045d |
|
(c) Zhang X. F.; Wang H. M.; Song Y. L.; Nie L. H.; Wang L. F.; Liu B.; Shen P. P.; Liu Y. Bioorg. Med. Chem. Lett. 2006, 16, 949.
doi: 10.1016/j.bmcl.2005.10.096 |
|
[2] |
For some examples: (a) Batra J. K.; Kang G. J.; Jurd L.; Hamel E.; Biochem. Pharmac. 1988, 37, 2595.
doi: 10.1016/0006-2952(88)90251-1 |
(b) Kasibhatla S.; Gourdeau H.; Meerovitch K.; Drewe J.; Reddy S.; Qiu L.; Zhang H.; Bergeron F.; Bouffard D.; Yang Q.; Herich J.; Lamothe S.; Cai S. X.; Tseng B. Mol. Cancer Ther. 2004, 3, 11.
doi: 10.1158/1535-7163.11.3.1 |
|
(c) De Campos M. P.; Filho V. C.; Da Silva R. Z.; Yunes R. A.; Zacchino S.; Juarez S.; Bella Cruz R. C.; Bella Cruz A. Biol. Pharm. Bull. 2005, 28, 1527.
doi: 10.1248/bpb.28.1527 |
|
[3] |
For some examples: (a) Hucke O.; Gelb M. H.; Verlinde C. L. M. J.; Buckner F. S. J. Med. Chem. 2005, 48, 5415.
doi: 10.1021/jm050441z |
(b) Shagufta; Srivastava A. K.; Sharma R.; Mishra R.; Balapure A. K.; Murthy P. S. R.; Panda G. Bioorg. Med. Chem. 2006, 14, 1497.
doi: 10.1016/j.bmc.2005.10.002 |
|
(c) Wood P. M.; Woo L. W. L.; Labrosse J. R.; Trusselle M. N.; Abbate S.; Longhi G.; Castiglioni E.; Lebon F.; Purohit A.; Reed M. J.; Potter B. V. L. J. Med. Chem. 2008, 51, 4226.
doi: 10.1021/jm800168s |
|
[4] |
For some reviews: (a) Shang Y.; Xiao J.; Wang Y.; Peng Y. Acta Chim. Sinica 2021, 79, 1303. (in Chinese)
doi: 10.6023/A21070345 |
(尚阳, 肖检, 王雅雯, 彭羽, 化学学报, 2021, 79, 1303.)
|
|
(b) Zhang L.; Xiao J.; Wang Y.; Peng Y. Acta Chim. Sinica 2022, 80, 1152. (in Chinese)
doi: 10.6023/A22040173 |
|
(张崃, 肖检, 王雅雯, 彭羽, 化学学报, 2022, 80, 1152.)
|
|
[5] |
For some early reviews: (a) Turner A. B. Q. Rev. Chem. Soc. 1964, 18, 347.
doi: 10.1039/qr9641800347 |
(b) Peter M. G. Angew. Chem. Int. Ed. 1989, 28, 555.
doi: 10.1002/(ISSN)1521-3773 |
|
(c) Itoh T. Prog. Polym. Sci. 2001, 26, 1019.
doi: 10.1016/S0079-6700(01)00012-0 |
|
(d) Toteva M. M.; Richard J. P. Adv. Phys. Org. Chem. 2011, 45, 39.
|
|
[6] |
For some selected reviews: (a) Parra A.; Tortosa M. ChemCatChem 2015, 7, 1524.
doi: 10.1002/cctc.v7.10 |
(b) Caruana L.; Fochi M.; Bernardi L. Molecules 2015, 20, 11733.
doi: 10.3390/molecules200711733 |
|
(c) Li W., Xu X.; Zhang P.; Li P. Chem. Asian J. 2018, 13, 2350.
doi: 10.1002/asia.201800415 |
|
(d) Lima C. G. S.; Pauli F. P.; Costa D. C. S.; Souza A. S.; Forezi L. S. M.; Ferreira V. F.; de Carvalho da Silva F. Eur. J. Org. Chem. 2020, 18, 2650.
|
|
(e) Wang J. Y.; Hao W. J.; Tu S. J.; Jiang B. Org. Chem. Front. 2020, 7, 1743.
doi: 10.1039/D0QO00387E |
|
(f) Singh G.; Pandey R.; Pankhade Y. A.; Fatma S.; Anand R. V. Chem. Rec. 2021, 21, 4150.
doi: 10.1002/tcr.v21.12 |
|
(g) Hussain Y.; Tamanna; Sharma M.; Kumar A.; Chauhan P. Org. Chem. Front. 2022, 9, 572.
doi: 10.1039/D1QO01561C |
|
[7] |
Zhao K.; Zhi Y.; Shu T.; Valkonen A.; Rissanen K.; Enders D. Angew. Chem. Int. Ed. 2016, 55, 12104.
doi: 10.1002/anie.v55.39 |
[8] |
Zhang L.; Zhou X.; Li P.; Liu Z.; Liu Y.; Suna Y.; Li W. RSC Adv. 2017, 7, 39216.
doi: 10.1039/C7RA08157J |
[9] |
Duan C.; Ye L.; Xu W.; Li X.; Chen F.; Zhao Z.; Li X. Chin. Chem. Lett. 2018, 29, 1273.
doi: 10.1016/j.cclet.2017.11.044 |
[10] |
(a) Annunziata F.; Pinna C.; Dallavalle S.; Tamborini L.; Pinto A. Int. J. Mol. Sci. 2020, 21, 4618.
doi: 10.3390/ijms21134618 |
(b) Cheke R. S.; Patel H. M.; Patil V. M.; Ansari I. A.; Ambhore J. P.; Shinde S. D.; Kadri A.; Snoussi M.; Adnan M.; Kharkar P. S.; Pasupuleti V. R.; Deshmukh P. K. Antibiotics 2022, 11, 566.
doi: 10.3390/antibiotics11050566 |
|
(c) Ratre P.; Kulkarni S.; Das S.; Liang C.; Mishra P. K.; Thareja S. Med. Oncol. 2023, 40, 41.
doi: 10.1007/s12032-022-01916-4 |
|
[11] |
(a) Kanchana U.S.; Diana E. J.; Mathew T. V.; Anilkumar G. Appl. Organomet. Chem. 2020, 34, e5983.
|
(b) Moreira N. M.; Martelli L. S. R.; Corrêa A. G. Beilstein J. Org. Chem. 2021, 17, 1952.
doi: 10.3762/bjoc.17.128 |
|
[12] |
Zhang Z. P.; Chen L.; Li X.; Cheng J. P. J. Org. Chem. 2018, 83, 2714.
doi: 10.1021/acs.joc.7b03177 |
[13] |
Xiang M.; Li C. Y.; Song X. J.; Zou Y.; Huang Z. C.; Li X.; Tian F.; Wang L. X. Chem. Commun. 2020, 56, 14825.
doi: 10.1039/D0CC06777F |
[14] |
Zhao M.; Li F.; Cheng Y.; Wang Y.; Zhou Z. Chin. J. Org. Chem. 2021, 41, 4039. (in Chinese)
doi: 10.6023/cjoc202105055 |
(赵敏, 李霏, 程益政, 王有名, 周正洪, 有机化学, 2021, 41, 4039.)
|
|
[15] |
For some selected reviews: (a) Akiyama T. Chem. Rev. 2007, 107, 5744.
doi: 10.1021/cr068374j |
(b) Terada M. Synthesis 2010, 12, 1929.
|
|
(c) Yu J.; Shi F.; Gong L. Z. Acc. Chem. Res. 2011, 44, 1156.
doi: 10.1021/ar2000343 |
|
(d) Parmar D.; Sugiono E.; Raja S.; Rueping M. Chem. Rev. 2014, 114, 9047.
doi: 10.1021/cr5001496 |
|
(e) Xia Z. L.; Xu-Xu Q. F.; Zheng C.; You S. L. Chem. Soc. Rev. 2020, 49, 286.
doi: 10.1039/C8CS00436F |
|
For some recent examples: (f) Wang J. Y.; Sun M.; Yu X. Y.; Zhang Y. C.; Tan W.; Shi F. Chin. J. Chem. 2021, 39, 2163.
doi: 10.1002/cjoc.v39.8 |
|
(g) Sheng F. T.; Yang S.; Wu S. F.; Zhang Y. C.; Shi F. Chin. J. Chem. 2022, 40, 2151.
doi: 10.1002/cjoc.v40.18 |
|
(h) Shi Y. C.; Yan X. Y.; Wu P.; Jiang S.; Xu R.; Tan W.; Shi F. Chin. J. Chem. 2023, 41, 27.
doi: 10.1002/cjoc.v41.1 |
|
[16] |
Zhang L.; Liu Y.; Liu K.; Liu Z.; He N.; Li W. Org. Biomol. Chem. 2017, 15, 8743.
doi: 10.1039/C7OB02325A |
[17] |
Zhang Z. P.; Xie K. X.; Yang C.; Li M.; Li X. J. Org. Chem. 2018, 83, 364.
doi: 10.1021/acs.joc.7b02750 |
[18] |
Jiang X. L.; Wu S. F.; Wang J. R.; Mei G. J.; Shi F. Adv. Synth. Catal. 2018, 360, 4225.
doi: 10.1002/adsc.v360.21 |
[19] |
Wu S. F.; Tu M. S.; Hang Q. Q.; Zhang S.; Ding H.; Zhang Y. C.; Shi F. Org. Biomol. Chem. 2020, 18, 5388.
doi: 10.1039/D0OB01049A |
[20] |
Yang G. H.; Zhao Q.; Zhang Z. P.; Zheng H. L.; Chen L.; Li X. J. Org. Chem. 2019, 84, 7883.
doi: 10.1021/acs.joc.9b00749 |
[21] |
Li H. H.; Meng Y. N.; Chen C. M.; Wang Y. Q.; Zhang Z. X.; Xu Z.; Zhou B.; Ye L. W. Sci. China Chem. 2023, DOI:10.1007/s11426-022-1536-9.
doi: 10.1007/s11426-022-1536-9 |
[22] |
For some recent examples: (a) Tan J. P.; Li K.; Shen B.; Zhuang C.; Liu Z.; Xiao K.; Yu P.; Yi B.; Ren X; Wang T. Nat. Commun. 2022, 13, 357.
doi: 10.1038/s41467-022-28001-8 |
(b) Chen Y.; He J.; Zhuang C.; Liu Z.; Xiao K.; Su Z.; Ren X.; Wang T. Angew. Chem. Int. Ed. 2022, 61, e202207334.
|
|
(c) Hu H. L.; Ren X.; He J.; Zhu L.; Fang S.; Su Z.; Wang T. Sci. China Chem. 2022, 65, 2500.
doi: 10.1007/s11426-022-1337-3 |
|
(d) Wu J. H.; Tan J. P.; Zheng J. Y.; He J.; Song Z.; Su Z.; Wang T. Angew. Chem. Int. Ed. 2023, 62, e202215720.
|
|
[23] |
Tan J. P.; Zhang H.; Jiang Z.; Chen Y.; Ren X.; Jiang C.; Wang T. Adv. Synth. Catal. 2020, 362, 1058.
doi: 10.1002/adsc.v362.5 |
[24] |
Roy S.; Pradhan S.; Kumar K.; Chatterjee I. Org. Chem. Front. 2020, 7, 1388.
doi: 10.1039/D0QO00354A |
[25] |
For early reviews: (a) Dalko P. I.; Moisan L. Angew. Chem. Int. Ed. 2001, 40, 3726.
doi: 10.1002/(ISSN)1521-3773 |
(b) Dalko P. I. Enantioselective Organocatalysis: Reactions and Experimental Procedures, Wiley-VCH, Weinheim, Germany, 2007.
|
|
(c) List B. Chem. Rev. 2007, 107, 5413.
doi: 10.1021/cr078412e |
|
(d) MacMillan D. W. C. Nature 2008, 455, 304.
doi: 10.1038/nature07367 |
|
For recent reviews: (e) Wang Y. B.; Tan B. Acc. Chem. Res. 2018, 51, 534.
doi: 10.1021/acs.accounts.7b00602 |
|
(f) Metrano A. J.; Miller S. J. Acc. Chem. Res. 2019, 52, 199
doi: 10.1021/acs.accounts.8b00473 |
|
(g) Zhang Y. C.; Jiang F.; Shi F. Acc. Chem. Res. 2020, 53, 425.
doi: 10.1021/acs.accounts.9b00549 |
|
(h) Zhang H. H.; Shi F. Acc. Chem. Res. 2022, 55, 2562.
doi: 10.1021/acs.accounts.2c00465 |
|
(i) Cheng J. K.; Xiang S. H.; Tan B. Acc. Chem. Res. 2022, 55, 2920.
doi: 10.1021/acs.accounts.2c00509 |
|
(j) Yang J.; Pan B. W.; Chen L.; Zhou Y.; Liu X. L. Chem. Synth. 2023, 3, 7.
doi: 10.20517/cs |
|
(k) Wang Z. H.; Sun T. J.; Zhang Y. P.; You Y.; Zhao J. Q.; Yin J. Q.; Yuan W. C. Chem. Synth. 2023, 3, 12.
|
|
[26] |
For some recent examples: (a) Han Z.; Zhuang H.; Tang L.; Zang Y.; Guo W.; Huang H.; Sun J. Org. Lett. 2022, 24, 4246.
doi: 10.1021/acs.orglett.2c01559 |
(b) Hang Q. Q.; Wu S. F.; Yang S.; Wang X.; Zhong Z.; Zhang Y. C.; Shi F. Sci. China Chem. 2022, 65, 1929.
doi: 10.1007/s11426-022-1363-y |
|
(c) Zhu Z.; Shi F. Chin. J. Org. Chem. 2022, 42, 2996.
doi: 10.6023/cjoc202200046 |
|
(d) Wu P.; Yan X. Y.; Jiang S.; Lu Y. N.; Tan W.; Shi F. Chem. Synth. 2023, 3, 6.
doi: 10.20517/cs |
|
(e) Liu Y. W.; Chen Y. H.; Cheng J. K.; Xiang S. H.; Tan B. Chem. Synth. 2023, 3, 11.
doi: 10.20517/cs |
|
(f) Zhu G. Y.; Zhou J. J.; Liu L. G.; Li X.; Zhu X. Q.; Lu X.; Zhou J. M.; Ye L. W. Angew. Chem. Int. Ed. 2022, 61, e202204603.
|
|
(g) Wang Z. S.; Zhu L. J.; Li C. T.; Liu B. Y.; Hong X.; Ye L. W. Angew. Chem. Int. Ed. 2022, 61, e202201436.
|
|
(h) Chen Y.; He J.; Zhuang C.; Liu Z.; Xiao K.; Su Z.; Ren X.; Wang T. Angew. Chem. Int. Ed. 2022, 61, e202207334.
|
|
(i) Zhu L.; Peng H.; Guo Y.; Che J.; Wu J. H. Su Z.; Wang T. Angew. Chem. Int. Ed. 2022, 61, e202202467.
|
|
[27] |
Zhao M. X.; Xiang J.; Zhao Z. Q.; Zhao X. L.; Shi M. Org. Biomol. Chem. 2020, 18, 1637.
doi: 10.1039/C9OB02652E |
[28] |
For some recent reviews: (a) Luo J.; Chen G. S.; Chen S. J.; Li Z. D.; Liu Y. L. Chem. Eur. J. 2021, 27, 6598.
doi: 10.1002/chem.v27.22 |
(b) Laviós A.; Sanz-Marco A.; Vila C.; Blay G.; Pedro J. R. Eur. J. Org. Chem. 2021, 2021, 2268.
doi: 10.1002/ejoc.v2021.16 |
|
(c) Wang J.; Li D.; Li J.; Zhu Q. Org. Biomol. Chem. 2021, 19, 6730.
doi: 10.1039/D1OB00864A |
|
[29] |
Yang J.; Ming S.; Yao G.; Yu H.; Du Y.; Gong J. Org. Chem. Front. 2022, 9, 2759.
doi: 10.1039/D2QO00302C |
[30] |
For some selected early reviews: (a) Harmata M. Chem. Commun. 2010, 46, 8904.
doi: 10.1039/c0cc03621h |
(b) Harmata M. Chem. Commun. 2010, 46, 8886.
doi: 10.1039/c0cc03620j |
|
(c) Lohse A. G.; Hsung R. P. Chem. Eur. J. 2011, 17, 3812.
doi: 10.1002/chem.201100260 |
|
[31] |
For a recent highlight: (a) Tan W.; Shi F. Chem. Synth. 2022, 2, 11.
doi: 10.20517/cs |
For a recent review: (b) Tan W.; Zhang J. Y.; Gao C. H.; Shi F. Sci. China: Chem. 2023, 66, 966.
|
|
[32] |
Li W.; Yuan H.; Liu Z.; Zhang Z.; Cheng Y.; Li P. Adv. Synth. Catal. 2018, 360, 2460.
doi: 10.1002/adsc.v360.13 |
[33] |
Liu Q.; Li S.; Chen X. Y.; Rissanen K.; Enders D. Org. Lett. 2018, 20, 3622.
doi: 10.1021/acs.orglett.8b01400 |
[34] |
Jiang F.; Yuan F. R.; Jin L. W.; Mei G. J.; Shi F. ACS Catal. 2018, 8, 10234.
doi: 10.1021/acscatal.8b03410 |
[35] |
(a) Wu Y.; Zhou X.; Xiao W.; Chen J. Chin. J. Org. Chem. 2020, 40, 3760. (in Chinese)
doi: 10.6023/cjoc202003061 |
(吴雅莉, 周雪松, 肖文精, 陈加荣, 有机化学, 2020, 40, 3760.)
|
|
(b) Sarkar T.; Talukdar K.; Das B. K.; Shah T. A.; Debnath B.; Punniyamurthy T. Org. Biomol. Chem. 2021, 19, 3776.
doi: 10.1039/D1OB00259G |
|
(c) Niu B.; Wei Y.; Shi M. Org. Chem. Front. 2021, 8, 3475.
doi: 10.1039/D1QO00273B |
|
(d) Du Q.; Zhang L.; Gao F.; Wang L.; Zhang W. Chin. J. Org. Chem. 2022, 42, 3240. (in Chinese)
doi: 10.6023/cjoc202207034 |
|
(杜青锋, 张璐, 高峰, 王乐, 张万斌, 有机化学, 2022, 42, 3240.)
|
|
[36] |
Sun M.; Ma C.; Zhou S. J.; Lou S. F.; Xiao J.; Jiao Y.; Shi F. Angew. Chem. Int. Ed. 2019, 58, 8703.
doi: 10.1002/anie.v58.26 |
[37] |
Wang H.; Yang S.; Zhang Y.; Shi F. Chin. J. Org. Chem. 2023, 43, 974. (in Chinese)
doi: 10.6023/cjoc202211022 |
(王海清, 杨爽, 张宇辰, 石枫, 有机化学, 2023, 43, 974.)
|
|
[38] |
For some reviews: (a) Mei G. J.; Shi F. J. Org. Chem. 2017, 82, 7695.
doi: 10.1021/acs.joc.7b01458 |
(b) Petrini M. Adv. Synth. Catal. 2020, 362, 1214.
doi: 10.1002/adsc.v362.6 |
|
(c) Zhang H. H.; Shi F. Chin. J. Org. Chem. 2022, 42, 3351. (in Chinese)
doi: 10.6023/cjoc202203018 |
|
(张洪浩, 石枫, 有机化学, 2022, 42, 3351.)
|
|
[39] |
For some reviews: (a) Chen D. F.; Han Z. Y.; Zhou X. L.; Gong L. Z. Acc. Chem. Res. 2014, 47, 2365.
doi: 10.1021/ar500101a |
(b) Wang P. S.; Chen D. F.; Gong L. Z. Top. Curr. Chem. 2020, 378, 9.
|
|
(c) Wang P. S.; Gong L. Z. Acc. Chem. Res. 2020, 53, 2841.
doi: 10.1021/acs.accounts.0c00477 |
|
(d) Zhang J.; Gao J.; Feng J.; Lu T.; Du D. Chin. J. Org. Chem. 2021, 41, 3792. (in Chinese)
doi: 10.6023/cjoc202106002 |
|
(张建明, 高健, 冯捷, 陆涛, 杜鼎, 有机化学, 2021, 41, 3792.)
|
|
(e) Chen D. F.; Gong L. Z. J. Am. Chem. Soc. 2022, 144, 2415.
doi: 10.1021/jacs.1c11408 |
|
(f) Xiang X.; He Z.; Dong X. Chin. J. Org. Chem. 2023, 43, 791. (in Chinese)
doi: 10.6023/cjoc202211043 |
|
(向勋, 何照林, 董秀琴, 有机化学, 2023, 43, 791.)
|
|
[40] |
Balanna K.; Barik S.; Shee S.; Gonnade R. G.; Biju A. T. Chem. Sci. 2022, 13, 11513.
doi: 10.1039/D2SC03745A |
[41] |
For some selected examples: (a) Goodman C. G.; Johnson J. S. J. Am. Chem. Soc. 2014, 136, 14698.
doi: 10.1021/ja508521a |
(b) Goodman C. G.; Walker M. M., Johnson J. S. J. Am. Chem. Soc. 2015, 137, 122.
doi: 10.1021/ja511701j |
|
(c) Chen X.; Fong J. Z. M.; Xu J.; Mou C.; Lu Y.; Yang S.; Song B. A.; Chi Y. R. J. Am. Chem. Soc. 2016, 138, 7212.
doi: 10.1021/jacs.6b00406 |
|
See also: (d) Liu B.; Song R.; Xu J.; Majhi P. K.; Yang X.; Yang S.; Jin Z.; Chi Y. R. Org. Lett. 2020, 22, 3335.
doi: 10.1021/acs.orglett.0c00748 |
|
[42] |
For some reviews: (a) Nevagi R. J.; Dighe S. N.; Dighe S. N. Eur. J. Med. Chem. 2015, 97, 561.
doi: 10.1016/j.ejmech.2014.10.085 |
(b) Radadiya A.; Shah A. Eur. J. Med. Chem. 2015, 97, 356.
doi: 10.1016/j.ejmech.2015.01.021 |
|
[43] |
Zielke K.; Kováč O.; Winter M.; Pospíšil J.; Waser M. Chem. Eur. J. 2019, 25, 8163.
doi: 10.1002/chem.v25.34 |
[44] |
For some reviews: (a) Ma S. Chem. Rev. 2005, 105, 2829.
doi: 10.1021/cr020024j |
(b) Cowen B. J.; Miller S. J. Chem. Soc. Rev. 2009, 38, 3102.
doi: 10.1039/b816700c |
|
(c) Yu S.; Ma S. Angew. Chem., Int. Ed. 2012, 51, 3074.
doi: 10.1002/anie.v51.13 |
|
(d) Pei C. K.; Shi M. Chem. Eur. J. 2012, 18, 6712.
doi: 10.1002/chem.201200209 |
|
(e) Ye J.; Ma S. Acc. Chem. Res. 2014, 47, 989.
doi: 10.1021/ar4002069 |
|
(f) Yang L.; Ma J. Acta Chim. Sinica 2016, 74, 130. (in Chinese)
doi: 10.6023/A15090617 |
|
(杨丽军, 马军安, 化学学报, 2016, 74, 130.).
|
|
(g) Li G.; Huo X.; Jiang X.; Zhang W. Chem. Soc. Rev. 2020, 49, 2060.
doi: 10.1039/C9CS00400A |
|
[45] |
Lu H.; Zhang H. X.; Tan C. Y.; Liu J. Y.; Wei H.; Xu P. F. J. Org. Chem. 2019, 84, 10292.
doi: 10.1021/acs.joc.9b01454 |
[46] |
Tan J. P.; Yu P.; Wu J. H.; Chen Y.; Pan J.; Jiang C.; Ren X.; Zhang H. S.; Wang T. Org. Lett. 2019, 21, 7298.
doi: 10.1021/acs.orglett.9b02560 |
[47] |
(a) Dalpozzo R. Org. Chem. Front. 2017, 4, 2063.
doi: 10.1039/C7QO00446J |
(b) Dalpozzo R. Adv. Synth. Catal. 2017, 359, 1772.
doi: 10.1002/adsc.v359.11 |
|
(c) Cao Z. Y.; Zhou F.; Zhou J. Acc. Chem. Res. 2018, 51, 1443.
doi: 10.1021/acs.accounts.8b00097 |
|
(d) Boddy A. J.; Bull J. A. Org. Chem. Front. 2021, 8, 1026.
doi: 10.1039/D0QO01085E |
|
[48] |
Wu Y. C.; Cui B. D.; Long Y.; Han W. Y.; Wan N. W.; Yuan W. C.; Chen Y. Z. Adv. Synth. Catal. 2021, 363, 1702.
doi: 10.1002/adsc.v363.6 |
[49] |
Zhang L.; Yuan H.; Lin W.; Cheng Y.; Li P.; Li W. Org. Lett. 2018, 20, 4970.
doi: 10.1021/acs.orglett.8b02088 |
[50] |
For some reviews, see: (a) Schindler C. S.; Jacobsen E. N. Science 2013, 340, 1052.
doi: 10.1126/science.1238769 |
(b) Bihani M.; Zhao J. C. G. Adv. Synth. Catal. 2017, 359, 534.
doi: 10.1002/adsc.v359.4 |
|
(c) Lin L.; Feng X. Chem. Eur. J. 2017, 23, 6464.
doi: 10.1002/chem.v23.27 |
|
(d) Zhan G.; Du W.; Chen Y. C. Chem. Soc. Rev. 2017, 46, 1675.
doi: 10.1039/C6CS00247A |
|
(e) Krautwald S.; Carreira E. M. J. Am. Chem. Soc. 2017, 139, 5627.
doi: 10.1021/jacs.6b13340 |
|
(f) Beletskaya I. P.; Nájera C.; Yus M. Chem. Rev. 2018, 118, 5080.
doi: 10.1021/acs.chemrev.7b00561 |
|
(g) Nájera C.; Foubelo F.; Sansano J. M.; Yus M. Org. Biomol. Chem. 2020, 18, 1232.
doi: 10.1039/C9OB02419K |
|
(h) Huo X.; Li G.; Wang X.; Zhang W. Angew. Chem. Int. Ed. 2022, 61, e202210086.
|
|
[51] |
For some reviews, see: (a) Nambo M.; Crudden C. M. ACS Catal. 2015, 5, 4734.
doi: 10.1021/acscatal.5b00909 |
(b) Kshatriya R.; Jejurkar V. P.; Saha S. Eur. J. Org. Chem. 2019, 2019, 3818.
doi: 10.1002/ejoc.201900465 |
|
(c) Liu X.; Wu X.; Zhang L.; Lin X.; Huang D. Synthesis 2020, 52, 2311.
doi: 10.1055/s-0040-1707115 |
|
[52] |
Huang G. B.; Huang W. H.; Guo J.; Xu D. L.; Qu X. C.; Zhai P. H.; Zheng X. H.; Weng J.; Lu G. Adv. Synth. Catal. 2019, 361, 1241.
doi: 10.1002/adsc.v361.6 |
[53] |
Wang J. R.; Jiang X. L.; Hang Q. Q.; Zhang S.; Mei G. J.; Shi F. J. Org. Chem. 2019, 84, 7829.
doi: 10.1021/acs.joc.9b00710 |
[54] |
Cheng Y.; Fang Z.; Jia Y.; Lu Z.; Li W.; Li P. RSC Adv. 2019, 9, 24212.
doi: 10.1039/C9RA04768A |
[55] |
Zhang R. L.; Liu B.; Qiu K. X.; Li H. T.; Zhang H. N.; Shen B. C.; Sun Z. W. Org. Lett. 2023, 25, 1711.
doi: 10.1021/acs.orglett.3c00370 |
[56] |
For selected reports, see: (a) Li P.; Chan S. H.; Chan A. S. C.; Kwong F. Y. Org. Biomol. Chem. 2011, 9, 7997.
doi: 10.1039/c1ob06191g |
(b) Maity R.; Gharui C.; Sil A. K.; Pan S. C. Org. Lett. 2017, 19, 662.
doi: 10.1021/acs.orglett.6b03823 |
|
(c) Maity R.; Pan S. C. Org. Biomol. Chem. 2018, 16, 1598.
doi: 10.1039/C8OB00078F |
|
(d) Sahoo S. C.; Maity R.; Pan S. C. ACS Omega 2019, 4, 2792.
doi: 10.1021/acsomega.8b03651 |
|
(e) Liu Y. Y.; Mo Y. R.; Dong X. D.; Chen L.; Ye L.; Li X. Y.; Zhao Z. G.; Li X. F. Tetrahedron 2019, 75, 2466.
doi: 10.1016/j.tet.2019.03.021 |
|
[57] |
Zhou J.; Bai L. J.; Liang G. J.; Xu Q. G.; Zhou L. P.; Zhou H. Org. Biomol. Chem. 2020, 18, 2641.
doi: 10.1039/D0OB00397B |
[58] |
For some selected reviews: (a) Tang W.; Zhang X. Chem. Rev. 2003, 103, 3029.
doi: 10.1021/cr020049i |
(b) Horsman G. P.; Zechel D. L. Chem. Rev. 2017, 117, 5704.
doi: 10.1021/acs.chemrev.6b00536 |
|
[59] |
For some selected reviews: (a) Li Z.; Duan W. Chin. J. Org. Chem. 2016, 36, 1805. (in Chinese)
doi: 10.6023/cjoc201602018 |
(李振, 段伟良, 有机化学, 2016, 36, 1805.)
|
|
(b) Zhu R. Y.; Liao K.; Yu J. S.; Zhou J. Acta Chim. Sinica 2020, 78, 193. (in Chinese)
doi: 10.6023/A20010002 |
|
(朱仁义, 廖奎, 余金生, 周剑, 化学学报, 2020, 78, 193.)
|
|
(c) Zhang F.; Luan Y.; Ye M. Chin. J. Org. Chem. 2021, 41, 3880. (in Chinese)
doi: 10.6023/cjoc202105053 |
|
(张凤萍, 栾玉新, 叶萌春, 有机化学, 2021, 41, 3880.)
|
|
[60] |
Chen Y.; Yu Z.; Jiang Z.; Tan J. P.; Wu J. H.; Lan Y.; Ren X.; Wang T. ACS Catal. 2021, 11, 14168.
doi: 10.1021/acscatal.1c03149 |
[1] | Jianghao Luo, Haowen Ma, Jiehao Zhang, Wei Zhou, Qian Cai. Synthesis of Pyrrolo[3,2-d]pyrimidin-4-ones via Cascade Alkyne−isocyanide [3+2] Cycloaddition/Boulton-Katritzky Rearrangement/Ring Expansion Process★ [J]. Acta Chimica Sinica, 2023, 81(8): 898-904. |
[2] | Zhanglong Yu, Zhongliang Li, Changjiang Yang, Qiangshuai Gu, Xinyuan Liu. Research Progress on Copper-Catalyzed Enantioselective Desymmetrization of Diols★ [J]. Acta Chimica Sinica, 2023, 81(8): 955-966. |
[3] | Wang Rui-Xiang, Zhao Qing-Ru, Gu Qing, You Shu-Li. Gold/Iridium Catalyzed Alkynylamide Cyclization/Asymmetric Allylic Benzylation Cascade Reaction★ [J]. Acta Chimica Sinica, 2023, 81(5): 431-434. |
[4] | Qingduan Meng, Jiahong Han, Yixiao Pan, Wei Hao, Qing-Hua Fan. Asymmetric Synthesis of C1-Symmetric Chiral N-Heterocyclic Carbene (NHC) Ligands and Their Applications in Asymmetric Catalysis★ [J]. Acta Chimica Sinica, 2023, 81(10): 1271-1279. |
[5] | Lai Zhang, Jian Xiao, Yawen Wang, Yu Peng. Recent Advances on the Construction of Chiral Dihydrobenzofurans by Asymmetric [3+2] Cyclization Reactions of Phenols (Quinones) and Alkenes [J]. Acta Chimica Sinica, 2022, 80(8): 1152-1164. |
[6] | Jinyue Ma, Lufei Huang, Baowen Zhou, Lin Yao. Construction and Catalysis Advances of Inorganic Chiral Nanostructures [J]. Acta Chimica Sinica, 2022, 80(11): 1507-1523. |
[7] | Qing-Ru Zhao, Ru Jiang, Shu-Li You. Ir-catalyzed Sequential Asymmetric Allylic Substitution/Olefin Isomerization for the Synthesis of Axially Chiral Compounds [J]. Acta Chimica Sinica, 2021, 79(9): 1107-1112. |
[8] | Bo-Shuai Mu, Zhi-Hao Zhang, Wen-Biao Wu, Jin-Sheng Yu, Jian Zhou. Recent Advances in Synthesis of Chiral 1,2-Dihydropyridines [J]. Acta Chimica Sinica, 2021, 79(6): 685-693. |
[9] | Yi Li, Ming-Hua Xu. Applications of Asymmetric Petasis Reaction in the Synthesis of Chiral Amines [J]. Acta Chimica Sinica, 2021, 79(11): 1345-1359. |
[10] | Zhang Ronghua, Xu Bing, Zhang Zhanming, Zhang Junliang. Ming-Phos/Copper(I)-Catalyzed Asymmetric[3+2] Cycloaddition of Azomethine Ylides with Nitroalkenes [J]. Acta Chimica Sinica, 2020, 78(3): 245-249. |
[11] | Wang Qiang, Gu Qing, You Shu-Li. Recent Progress on Transition-Metal-Catalyzed Asymmetric C-H Bond Functionalization for the Synthesis of Biaryl Atropisomers [J]. Acta Chim. Sinica, 2019, 77(8): 690-704. |
[12] | Chen Zhiyao, Liu Jiewei, Cui Hao, Zhang Li, Su Chengyong. Applications of Porphyrin Metal-Organic Frameworks in CO2 Capture and Conversion [J]. Acta Chim. Sinica, 2019, 77(3): 242-252. |
[13] | Zhou Yuanchun, Zhou Zhi, Du Wei, Chen Yingchun. Asymmetric Inverse-Electron-Demand Diels-Alder Reaction of 2-Pyrone and 2,5-Dienones via HOMO-Activation [J]. Acta Chim. Sinica, 2018, 76(5): 382-386. |
[14] | Li Shu-Sen, Wang Jianbo. Recent Advance in Asymmetric Trifluoromethylthiolation [J]. Acta Chim. Sinica, 2018, 76(12): 913-924. |
[15] | Zhou Xiao-Le, Su Yong-Liang, Wang Pu-Sheng, Gong Liu-Zhu. Asymmetric Allylic C-H Alkylation of 1,4-Dienes with Aldehydes [J]. Acta Chim. Sinica, 2018, 76(11): 857-861. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||